Bilineer enterpolasyon - Vikipedi
İçeriğe atla
Ana menü
Gezinti
  • Anasayfa
  • Hakkımızda
  • İçindekiler
  • Rastgele madde
  • Seçkin içerik
  • Yakınımdakiler
Katılım
  • Deneme tahtası
  • Köy çeşmesi
  • Son değişiklikler
  • Dosya yükle
  • Topluluk portalı
  • Wikimedia dükkânı
  • Yardım
  • Özel sayfalar
Vikipedi Özgür Ansiklopedi
Ara
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç

İçindekiler

  • Giriş
  • 1 Algoritma
    • 1.1 Alternatif algoritma
    • 1.2 Sadeleştirilmiş algoritma
  • 2 Ayrıca bakınız

Bilineer enterpolasyon

  • العربية
  • Català
  • Čeština
  • English
  • Español
  • فارسی
  • Suomi
  • Français
  • עברית
  • Հայերեն
  • 日本語
  • 한국어
  • Polski
  • Português
  • Русский
  • Українська
  • 中文
Bağlantıları değiştir
  • Madde
  • Tartışma
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Araçlar
Eylemler
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Genel
  • Sayfaya bağlantılar
  • İlgili değişiklikler
  • Kalıcı bağlantı
  • Sayfa bilgisi
  • Bu sayfayı kaynak göster
  • Kısaltılmış URL'yi al
  • Karekodu indir
Yazdır/dışa aktar
  • Bir kitap oluştur
  • PDF olarak indir
  • Basılmaya uygun görünüm
Diğer projelerde
  • Wikimedia Commons
  • Vikiveri ögesi
Görünüm
Vikipedi, özgür ansiklopedi
(Bilineer interpolasyon sayfasından yönlendirildi)
Bu madde hiçbir kaynak içermemektedir. Lütfen güvenilir kaynaklar ekleyerek madde içeriğinin geliştirilmesine yardımcı olun. Kaynaksız içerik itiraz konusu olabilir ve kaldırılabilir.
Kaynak ara: "Bilineer enterpolasyon" – haber · gazete · kitap · akademik · JSTOR
(Şubat 2020) (Bu şablonun nasıl ve ne zaman kaldırılması gerektiğini öğrenin)
Dört kırmızı nokta eldeki datayı ve yeşil nokta da interpolasyon yapılacak noktayı göstermektedir.

Bilineer interpolasyon, lineer interpolasyonun iki değişkenli fonksiyonların (ör. x ve y) rectilineer iki-boyutlu grid üzerinde interpolasyonu için olan uzantısıdır.

Metot, lineer interpolasyonun önce bir yönde sonra diğer yönde sırasıyla uygulanmasına dayanır. Bu iki adım kendi içinde lineerse de, metot, bir bütün olarak lineer değil; quadratictir.

Algoritma

[değiştir | kaynağı değiştir]

Bilinmeyen bir fonksiyon f'in (x, y) noktasındaki değerinin bulunacağı varsayılsın. Ayrıca, f'in dört noktadaki değeri bilinsin: Q11 = (x1, y1), Q12 = (x1, y2), Q21 = (x2, y1) ve Q22 = (x2, y2).

İlk olarak, x-doğrultusunda lineer interpolasyon aşağıdaki gibi yapılır:

f ( x , y 1 ) ≈ x 2 − x x 2 − x 1 f ( Q 11 ) + x − x 1 x 2 − x 1 f ( Q 21 ) f ( x , y 2 ) ≈ x 2 − x x 2 − x 1 f ( Q 12 ) + x − x 1 x 2 − x 1 f ( Q 22 ) {\displaystyle {\begin{aligned}f(x,y_{1})&\approx {\frac {x_{2}-x}{x_{2}-x_{1}}}f(Q_{11})+{\frac {x-x_{1}}{x_{2}-x_{1}}}f(Q_{21})\\f(x,y_{2})&\approx {\frac {x_{2}-x}{x_{2}-x_{1}}}f(Q_{12})+{\frac {x-x_{1}}{x_{2}-x_{1}}}f(Q_{22})\end{aligned}}} {\displaystyle {\begin{aligned}f(x,y_{1})&\approx {\frac {x_{2}-x}{x_{2}-x_{1}}}f(Q_{11})+{\frac {x-x_{1}}{x_{2}-x_{1}}}f(Q_{21})\\f(x,y_{2})&\approx {\frac {x_{2}-x}{x_{2}-x_{1}}}f(Q_{12})+{\frac {x-x_{1}}{x_{2}-x_{1}}}f(Q_{22})\end{aligned}}}

İkinci olarak, yukarıdaki denklem, y-doğrultusunda lineer interpolasyonu uygulanırsa, aşağıdaki denklem bulunur:

f ( x , y ) ≈ y 2 − y y 2 − y 1 f ( x , y 1 ) + y − y 1 y 2 − y 1 f ( x , y 2 ) ≈ y 2 − y y 2 − y 1 ( x 2 − x x 2 − x 1 f ( Q 11 ) + x − x 1 x 2 − x 1 f ( Q 21 ) ) + y − y 1 y 2 − y 1 ( x 2 − x x 2 − x 1 f ( Q 12 ) + x − x 1 x 2 − x 1 f ( Q 22 ) ) = 1 ( x 2 − x 1 ) ( y 2 − y 1 ) ( f ( Q 11 ) ( x 2 − x ) ( y 2 − y ) + f ( Q 21 ) ( x − x 1 ) ( y 2 − y ) + f ( Q 12 ) ( x 2 − x ) ( y − y 1 ) + f ( Q 22 ) ( x − x 1 ) ( y − y 1 ) ) = 1 ( x 2 − x 1 ) ( y 2 − y 1 ) [ x 2 − x x − x 1 ] [ f ( Q 11 ) f ( Q 12 ) f ( Q 21 ) f ( Q 22 ) ] [ y 2 − y y − y 1 ] {\displaystyle {\begin{aligned}f(x,y)&\approx {\frac {y_{2}-y}{y_{2}-y_{1}}}f(x,y_{1})+{\frac {y-y_{1}}{y_{2}-y_{1}}}f(x,y_{2})\\&\approx {\frac {y_{2}-y}{y_{2}-y_{1}}}\left({\frac {x_{2}-x}{x_{2}-x_{1}}}f(Q_{11})+{\frac {x-x_{1}}{x_{2}-x_{1}}}f(Q_{21})\right)+{\frac {y-y_{1}}{y_{2}-y_{1}}}\left({\frac {x_{2}-x}{x_{2}-x_{1}}}f(Q_{12})+{\frac {x-x_{1}}{x_{2}-x_{1}}}f(Q_{22})\right)\\&={\frac {1}{(x_{2}-x_{1})(y_{2}-y_{1})}}\left(f(Q_{11})(x_{2}-x)(y_{2}-y)+f(Q_{21})(x-x_{1})(y_{2}-y)+f(Q_{12})(x_{2}-x)(y-y_{1})+f(Q_{22})(x-x_{1})(y-y_{1})\right)\\&={\frac {1}{(x_{2}-x_{1})(y_{2}-y_{1})}}{\begin{bmatrix}x_{2}-x&x-x_{1}\end{bmatrix}}{\begin{bmatrix}f(Q_{11})&f(Q_{12})\\f(Q_{21})&f(Q_{22})\end{bmatrix}}{\begin{bmatrix}y_{2}-y\\y-y_{1}\end{bmatrix}}\end{aligned}}} {\displaystyle {\begin{aligned}f(x,y)&\approx {\frac {y_{2}-y}{y_{2}-y_{1}}}f(x,y_{1})+{\frac {y-y_{1}}{y_{2}-y_{1}}}f(x,y_{2})\\&\approx {\frac {y_{2}-y}{y_{2}-y_{1}}}\left({\frac {x_{2}-x}{x_{2}-x_{1}}}f(Q_{11})+{\frac {x-x_{1}}{x_{2}-x_{1}}}f(Q_{21})\right)+{\frac {y-y_{1}}{y_{2}-y_{1}}}\left({\frac {x_{2}-x}{x_{2}-x_{1}}}f(Q_{12})+{\frac {x-x_{1}}{x_{2}-x_{1}}}f(Q_{22})\right)\\&={\frac {1}{(x_{2}-x_{1})(y_{2}-y_{1})}}\left(f(Q_{11})(x_{2}-x)(y_{2}-y)+f(Q_{21})(x-x_{1})(y_{2}-y)+f(Q_{12})(x_{2}-x)(y-y_{1})+f(Q_{22})(x-x_{1})(y-y_{1})\right)\\&={\frac {1}{(x_{2}-x_{1})(y_{2}-y_{1})}}{\begin{bmatrix}x_{2}-x&x-x_{1}\end{bmatrix}}{\begin{bmatrix}f(Q_{11})&f(Q_{12})\\f(Q_{21})&f(Q_{22})\end{bmatrix}}{\begin{bmatrix}y_{2}-y\\y-y_{1}\end{bmatrix}}\end{aligned}}}
Birim bir kare üzerindeki bir bilineer interpolasyonu örneği. z-değerleri 0, 1, 1 ve 0.5'tir. İnterpolasyon değerleri renkle gösterilmiştir.

Son denklem, hangi doğrultu ile başlanırsa başlansın, aynıdır. Örneğin, önce y- sonra x-doğrultusunda yapılan iki ardışık lineer interpolasyon yukarıdaki aynı terimi verir.

Alternatif algoritma

[değiştir | kaynağı değiştir]

İnterpolasyonun ifadesinde alternatif bir yöntem aşağıdaki gibidir:

f ( x , y ) ≈ a 0 + a 1 x + a 2 y + a 3 x y {\displaystyle f(x,y)\approx a_{0}+a_{1}x+a_{2}y+a_{3}xy} {\displaystyle f(x,y)\approx a_{0}+a_{1}x+a_{2}y+a_{3}xy}

Denklemin katsayıları aşağıdaki lineer sistemin çözülmesi ile elde edilir:

[ 1 x 1 y 1 x 1 y 1 1 x 1 y 2 x 1 y 2 1 x 2 y 1 x 2 y 1 1 x 2 y 2 x 2 y 2 ] [ a 0 a 1 a 2 a 3 ] = [ f ( Q 11 ) f ( Q 12 ) f ( Q 21 ) f ( Q 22 ) ] {\displaystyle {\begin{aligned}{\begin{bmatrix}1&x_{1}&y_{1}&x_{1}y_{1}\\1&x_{1}&y_{2}&x_{1}y_{2}\\1&x_{2}&y_{1}&x_{2}y_{1}\\1&x_{2}&y_{2}&x_{2}y_{2}\end{bmatrix}}{\begin{bmatrix}a_{0}\\a_{1}\\a_{2}\\a_{3}\end{bmatrix}}={\begin{bmatrix}f(Q_{11})\\f(Q_{12})\\f(Q_{21})\\f(Q_{22})\end{bmatrix}}\end{aligned}}} {\displaystyle {\begin{aligned}{\begin{bmatrix}1&x_{1}&y_{1}&x_{1}y_{1}\\1&x_{1}&y_{2}&x_{1}y_{2}\\1&x_{2}&y_{1}&x_{2}y_{1}\\1&x_{2}&y_{2}&x_{2}y_{2}\end{bmatrix}}{\begin{bmatrix}a_{0}\\a_{1}\\a_{2}\\a_{3}\end{bmatrix}}={\begin{bmatrix}f(Q_{11})\\f(Q_{12})\\f(Q_{21})\\f(Q_{22})\end{bmatrix}}\end{aligned}}}

Eğer çözüm f(Q) cinsinden istenirse, aşağıdaki ifade kullanılabilir:

f ( x , y ) ≈ b 11 f ( Q 11 ) + b 12 f ( Q 12 ) + b 21 f ( Q 21 ) + b 22 f ( Q 22 ) {\displaystyle f(x,y)\approx b_{11}f(Q_{11})+b_{12}f(Q_{12})+b_{21}f(Q_{21})+b_{22}f(Q_{22})} {\displaystyle f(x,y)\approx b_{11}f(Q_{11})+b_{12}f(Q_{12})+b_{21}f(Q_{21})+b_{22}f(Q_{22})}

Bu denklemin katsayıları da aşağıdaki sistemin çözümüyle elde edilir:

[ b 11 b 12 b 21 b 22 ] = ( [ 1 x 1 y 1 x 1 y 1 1 x 1 y 2 x 1 y 2 1 x 2 y 1 x 2 y 1 1 x 2 y 2 x 2 y 2 ] − 1 ) T [ 1 x y x y ] {\displaystyle {\begin{bmatrix}b_{11}\\b_{12}\\b_{21}\\b_{22}\end{bmatrix}}=\left({\begin{bmatrix}1&x_{1}&y_{1}&x_{1}y_{1}\\1&x_{1}&y_{2}&x_{1}y_{2}\\1&x_{2}&y_{1}&x_{2}y_{1}\\1&x_{2}&y_{2}&x_{2}y_{2}\end{bmatrix}}^{-1}\right)^{T}{\begin{bmatrix}1\\x\\y\\xy\end{bmatrix}}} {\displaystyle {\begin{bmatrix}b_{11}\\b_{12}\\b_{21}\\b_{22}\end{bmatrix}}=\left({\begin{bmatrix}1&x_{1}&y_{1}&x_{1}y_{1}\\1&x_{1}&y_{2}&x_{1}y_{2}\\1&x_{2}&y_{1}&x_{2}y_{1}\\1&x_{2}&y_{2}&x_{2}y_{2}\end{bmatrix}}^{-1}\right)^{T}{\begin{bmatrix}1\\x\\y\\xy\end{bmatrix}}}

Sadeleştirilmiş algoritma

[değiştir | kaynağı değiştir]

Eğer f'in bilindiği dört noktanın koordinatları (0, 0), (0, 1), (1, 0) ve (1, 1), ise; interpolasyon denklemi aşağıdakince sadeleşir:

f ( x , y ) ≈ f ( 0 , 0 ) ( 1 − x ) ( 1 − y ) + f ( 1 , 0 ) x ( 1 − y ) + f ( 0 , 1 ) ( 1 − x ) y + f ( 1 , 1 ) x y . {\displaystyle f(x,y)\approx f(0,0)(1-x)(1-y)+f(1,0)x(1-y)+f(0,1)(1-x)y+f(1,1)xy.} {\displaystyle f(x,y)\approx f(0,0)(1-x)(1-y)+f(1,0)x(1-y)+f(0,1)(1-x)y+f(1,1)xy.}

Eşdeğer matris formatında ise denklem:

f ( x , y ) ≈ [ 1 − x x ] [ f ( 0 , 0 ) f ( 0 , 1 ) f ( 1 , 0 ) f ( 1 , 1 ) ] [ 1 − y y ] . {\displaystyle f(x,y)\approx {\begin{bmatrix}1-x&x\end{bmatrix}}{\begin{bmatrix}f(0,0)&f(0,1)\\f(1,0)&f(1,1)\end{bmatrix}}{\begin{bmatrix}1-y\\y\end{bmatrix}}.} {\displaystyle f(x,y)\approx {\begin{bmatrix}1-x&x\end{bmatrix}}{\begin{bmatrix}f(0,0)&f(0,1)\\f(1,0)&f(1,1)\end{bmatrix}}{\begin{bmatrix}1-y\\y\end{bmatrix}}.}

Ayrıca bakınız

[değiştir | kaynağı değiştir]
  • İnterpolasyon
  • Lineer interpolasyon
  • Trilineer interpolasyon
"https://tr.wikipedia.org/w/index.php?title=Bilineer_enterpolasyon&oldid=35726639" sayfasından alınmıştır
Kategori:
  • Enterpolasyon
Gizli kategori:
  • Kaynakları olmayan maddeler Şubat 2020
  • Sayfa en son 20.47, 25 Temmuz 2025 tarihinde değiştirildi.
  • Metin Creative Commons Atıf-AynıLisanslaPaylaş Lisansı altındadır ve ek koşullar uygulanabilir. Bu siteyi kullanarak Kullanım Şartlarını ve Gizlilik Politikasını kabul etmiş olursunuz.
    Vikipedi® (ve Wikipedia®) kâr amacı gütmeyen kuruluş olan Wikimedia Foundation, Inc. tescilli markasıdır.
  • Gizlilik politikası
  • Vikipedi hakkında
  • Sorumluluk reddi
  • Davranış Kuralları
  • Geliştiriciler
  • İstatistikler
  • Çerez politikası
  • Mobil görünüm
  • Wikimedia Foundation
  • Powered by MediaWiki
Bilineer enterpolasyon
Konu ekle