Cantor'un köşegen yöntemi - Vikipedi
İçeriğe atla
Ana menü
Gezinti
  • Anasayfa
  • Hakkımızda
  • İçindekiler
  • Rastgele madde
  • Seçkin içerik
  • Yakınımdakiler
Katılım
  • Deneme tahtası
  • Köy çeşmesi
  • Son değişiklikler
  • Dosya yükle
  • Topluluk portalı
  • Wikimedia dükkânı
  • Yardım
  • Özel sayfalar
Vikipedi Özgür Ansiklopedi
Ara
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç

İçindekiler

  • Giriş
  • 1 Büyüklük
  • 2 İspat

Cantor'un köşegen yöntemi

  • العربية
  • বাংলা
  • Català
  • Čeština
  • Dansk
  • Deutsch
  • English
  • Esperanto
  • Español
  • Eesti
  • Euskara
  • فارسی
  • Suomi
  • Français
  • Galego
  • עברית
  • Magyar
  • Հայերեն
  • İtaliano
  • 日本語
  • ქართული
  • 한국어
  • Lombard
  • മലയാളം
  • Nederlands
  • Polski
  • Português
  • Русский
  • Simple English
  • Slovenčina
  • Slovenščina
  • தமிழ்
  • ไทย
  • Українська
  • Tiếng Việt
  • 中文
Bağlantıları değiştir
  • Madde
  • Tartışma
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Araçlar
Eylemler
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Genel
  • Sayfaya bağlantılar
  • İlgili değişiklikler
  • Kalıcı bağlantı
  • Sayfa bilgisi
  • Bu sayfayı kaynak göster
  • Kısaltılmış URL'yi al
  • Karekodu indir
Yazdır/dışa aktar
  • Bir kitap oluştur
  • PDF olarak indir
  • Basılmaya uygun görünüm
Diğer projelerde
  • Vikiveri ögesi
Görünüm
Vikipedi, özgür ansiklopedi
(Cantor'un Diagonal Yöntemi sayfasından yönlendirildi)
Bu madde hiçbir kaynak içermemektedir. Lütfen güvenilir kaynaklar ekleyerek madde içeriğinin geliştirilmesine yardımcı olun. Kaynaksız içerik itiraz konusu olabilir ve kaldırılabilir.
Kaynak ara: "Cantor'un köşegen yöntemi" – haber · gazete · kitap · akademik · JSTOR
(Aralık 2018) (Bu şablonun nasıl ve ne zaman kaldırılması gerektiğini öğrenin)
Georg Cantor

Georg Cantor'un doğal sayılar ile reel sayıların birebir eşlemesinin yapılamayacağını göstermek için geliştirdiği yöntem. Böyle bir eşlemenin yokluğu sonsuz elemanlı kümelerin büyüklüklerinin karşılaştırılması kavramının gelişimi açısından son derece önemlidir.

Büyüklük

[değiştir | kaynağı değiştir]

Verilen bir A kümesinin en az B kümesi kadar büyük olması B'den A'ya bir birebir fonksiyonun var olması şeklinde tanımlanır ( A ≥ B {\displaystyle A\geq B} {\displaystyle A\geq B} yazılır). Böylelikle B'nin bir kopyasının A'nın içerisinde bulunabiliyor olması sağlanır. Eğer aynı şekilde B'den de A'ya bir birebir fonksiyon varsa o zaman bu iki küme eşit büyüklükte denir ( B ≃ A {\displaystyle B\simeq A} {\displaystyle B\simeq A} yazılır).

  • Örnek olarak Çift Tam Sayılar Kümesi'nin ( 2 Z = { . . . , − 4 , − 2 , 0 , 2 , 4 , . . . } {\displaystyle 2\mathbb {Z} =\{...,-4,-2,0,2,4,...\}} {\displaystyle 2\mathbb {Z} =\{...,-4,-2,0,2,4,...\}}) ile Tam Sayılar Kümesi ( Z = { . . . , − 3 , − 2 , − 1 , 0 , 1 , 2 , . . . } ) {\displaystyle (\mathbb {Z} =\{...,-3,-2,-1,0,1,2,...\})} {\displaystyle (\mathbb {Z} =\{...,-3,-2,-1,0,1,2,...\})} düşünülebilir. 2 Z {\displaystyle 2\mathbb {Z} } {\displaystyle 2\mathbb {Z} }'nin elemanları Z {\displaystyle \mathbb {Z} } {\displaystyle \mathbb {Z} }'nin içerisinde kendi kendilerine gönderilir.

İspat

[değiştir | kaynağı değiştir]

0 ile 1 arasındaki reel sayılar kümesinin sayılabilir olduğunu varsayalım. Buna göre 0 ile 1 arasındaki her reel sayıya karşılık doğal sayılar kümesinde bir sayı gelmelidir. Yani iki küme birebir eşlenebilir diyoruz. Böyle bir eşlemeyi ele alalım ve 0 ile 1 arasındaki reel sayıları verilen eşleşmeye göre sıralayarak bir liste elde edelim. Bu listede sayıları küçükten büyüğe gelecek şekilde sıralamadım(bu şekilde sıralamaya gerek yoktur bu kısma takılmayın). Aşağıdaki sadece ilk 4 eşleşmeyi yazdım. Bu eşleşmenin sonsuza kadar gittiğini varsayıyoruz(önemli olan nokta burasıdır). Dolayısıyla aslında aşağıdaki birebir eşleşmede tüm doğal sayılar ve 0-1 aralığındaki tüm reel sayılar var diyoruz.

0 ile 1 arasındaki tüm reel sayıları yazdığımızı diğer bir deyişle yazabileceğimizi iddia etmiştik. Şimdi bunun aksini kanıtlayalım.
0 ile 1 arasında olan öyle bir sayı bulalım ki: Bu sayıya C adını verelim ve onu şu kurala göre oluşturalım: 

Birinci sayının ilk ondalık basamağına bakalım ve buradaki rakamdan farklı herhangi bir rakamı seçip C sayısının ilk basamağı olarak yazalım, aynı şekilde C'nin ikinci, üçüncü,... basamaklarını da oluşturalım. Mesela eğer 0 la 1 arasındaki reel sayılar aşağıdaki gibi sıralanmışsa:

s0 = 0,13567....... 
^
s1 = 0,25678.......
 ^
s2 = 0,00212.......
 ^
s3 = 0,14291.......
 ^
. 
. 
.

C sayısının ilk basamağını 1'den farklı, 2. basamağını 5'ten farklı, 3. basamağını 2'den farklı, 4. basamağını gene 9'dan farklı birer rakam olarak seçeriz. (Varsayımımıza göre) Bu şekilde devam ederek 0 ile 1 arasındaki tüm sayıları tararız. Hatırlayın: taradığımız her reel sayıya karşılık doğal sayılar kümesinde bir sayı var(birebir eşleşme).

0 ile 1 arasında var olan tüm sayıları taradık(bu sayılara baktık) ve yukarıdaki anlattığımız yol ile bir C sayısı bulduk. C sayısının 0 ile 1 arasında olduğunu ve 0 ile 1 arasındaki tüm sayıları taradığımızı varsaymıştık. O halde taradığımız sayılardan birisi C sayısı olmalı. Halbuki C sayısı bizim taradığımız sayılardan hiçbirine eşit değil çünkü C sayısını buna göre oluşturmuştuk zaten. Gördüğünüz gibi burada bir tezatlık var. 0 ile 1 arasındaki tüm sayıları tek tek taradığımızı kabul ediyoruz.Ama elimizde 0 ile 1 aralığında öyle bir C sayısı bulduk ki taradığımız tüm sayılardan farklı. Dolayısıyla bu C sayısına karşılık gelebilecek bir doğal sayı da yok. Demek ki varsaydığımız birebir eşleme mümkün değil ve aslında reel sayılar kümesindeki eleman sayısı doğal sayılar kümesindeki eleman sayısından daha fazla. O zaman 0 ile 1 arasındaki reel sayılar kümesi sayılamaz deriz.

"https://tr.wikipedia.org/w/index.php?title=Cantor%27un_köşegen_yöntemi&oldid=34452502" sayfasından alınmıştır
Kategori:
  • Matematik teoremleri
Gizli kategori:
  • Kaynakları olmayan maddeler Aralık 2018
  • Sayfa en son 16.14, 7 Aralık 2024 tarihinde değiştirildi.
  • Metin Creative Commons Atıf-AynıLisanslaPaylaş Lisansı altındadır ve ek koşullar uygulanabilir. Bu siteyi kullanarak Kullanım Şartlarını ve Gizlilik Politikasını kabul etmiş olursunuz.
    Vikipedi® (ve Wikipedia®) kâr amacı gütmeyen kuruluş olan Wikimedia Foundation, Inc. tescilli markasıdır.
  • Gizlilik politikası
  • Vikipedi hakkında
  • Sorumluluk reddi
  • Davranış Kuralları
  • Geliştiriciler
  • İstatistikler
  • Çerez politikası
  • Mobil görünüm
  • Wikimedia Foundation
  • Powered by MediaWiki
Cantor'un köşegen yöntemi
Konu ekle