Dosya:Ehrenfest-paradox-disk.svg - Vikipedi
İçeriğe atla
Ana menü
Gezinti
  • Anasayfa
  • Hakkımızda
  • İçindekiler
  • Rastgele madde
  • Seçkin içerik
  • Yakınımdakiler
Katılım
  • Deneme tahtası
  • Köy çeşmesi
  • Son değişiklikler
  • Dosya yükle
  • Topluluk portalı
  • Wikimedia dükkânı
  • Yardım
  • Özel sayfalar
Vikipedi Özgür Ansiklopedi
Ara
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç

Dosya:Ehrenfest-paradox-disk.svg

Sayfa içeriği diğer dillerde desteklenmemektedir.
  • Dosya
  • Tartışma
  • Oku
  • Wikimedia Commons üzerinde gör
  • Yerel açıklama ekle
  • Yerel açıklama kaynağı ekle
Araçlar
Eylemler
  • Oku
  • Wikimedia Commons üzerinde gör
  • Yerel açıklama ekle
  • Yerel açıklama kaynağı ekle
Genel
  • Sayfaya bağlantılar
  • Basılmaya uygun görünüm
  • Sayfa bilgisi
  • Kısaltılmış URL'yi al
  • Karekodu indir
Diğer projelerde
Görünüm
Vikipedi, özgür ansiklopedi
  • Dosya
  • Dosya geçmişi
  • Dosya kullanımı
  • Küresel dosya kullanımı
  • Üstveri
Dosya:Ehrenfest-paradox-disk.svg
Bu SVG dosyasının PNG önizlemesinin boyutu: 220 × 180 piksel. Diğer çözünürlükler: 293 × 240 piksel | 587 × 480 piksel | 939 × 768 piksel | 1.252 × 1.024 piksel | 2.503 × 2.048 piksel.
Tam çözünürlük (SVG dosyası, sözde 220 × 180 piksel, dosya boyutu: 4 KB)
Bu dosya Wikimedia Commons'ta bulunmaktadır. Dosyanın açıklaması aşağıda gösterilmiştir.
Commons, serbest/özgür telifli medya dosyalarının bulundurulduğu depodur. Siz de yardım edebilirsiniz.
Bu dosya Wikimedia Commons'ta bulunmaktadır.

Özet

AçıklamaEhrenfest-paradox-disk.svg
English: The Ehrenfest paradox in special relativity describes a spinning cylinder, which should contract around the circumference due to Lorentz-contraction, while its radius remains constant. The graphic shows rulers which rest in the laboratory system and rulers attached to the cylinder, which get contracted relatively to the laboratory system.
Deutsch: Das Ehrenfestsche Paradoxon der Speziellen Relativitätstheorie beschreibt einen rotierenden Zylinder, der sich entlang seinem Umfang aufgrund der Lorentzkontraktion kontrahieren sollte, während sein Radius konstant bleibt. Die Grafik zeigt Maßstäbe die im Laborsystem ruhen, so wie Maßstäbe die mit dem Zylinder rotieren und deshalb relativ zum Laborsystem kontrahiert werden.
Tarih 21 Ocak 2013
Kaynak Yükleyenin kendi çalışması
Yazar Geek3
Diğer sürümler
  • without rulers
    without rulers

Source code

The image is created by the following source-code. Requirements:

  • python
  • svgwrite

python source code:

#!/usr/bin/python
# -*- coding: utf8 -*-

try:
    import svgwrite as svg
except ImportError:
    print 'You need to install svgwrite: http://pypi.python.org/pypi/svgwrite/'
    exit(1)

from math import *

size = 220, 180
rx, ry = size[0] / 2 - 3, 50
v = float(ry) / float(rx)
l = 40
lw = 2

# document
doc = svg.Drawing('ehrenfest-paradox-disk.svg', size=size)
doc['stroke-width'] = lw
doc['fill'] = 'white'
doc['stroke'] = 'black'
doc['stroke-linejoin'] = 'miter'

# background
doc.add(doc.rect(id='background', insert=(0, 0), size=size, stroke='none'))

# disk
grad = doc.defs.add(doc.linearGradient(id='grad', start=('0%',0), end=('100%',0), gradientUnits='objectBoundingBox'))
grad.add_stop_color(offset=0, color='#F7F7F7')
grad.add_stop_color(offset=0.5, color='#DDD')
grad.add_stop_color(offset=1, color='#999')
disk = doc.add(doc.g(id='disk', transform='translate(' + str(size[0]/2) + ',' + str(ry+3) + ')'))
path = 'M ' + str(-rx) + ',0 V ' + str(l)
path += ' A ' + str(rx) + ',' + str(ry) + ' 0 1 0 ' + str(rx) + ',' + str(l)
path += ' V 0 Z'
disk.add(doc.path(d=path, fill='url(#grad)', stroke_linejoin='bevel'))
disk.add(doc.ellipse(center=(0, 0), r=(rx, ry), fill='#D8D8D8'))
disk.add(doc.ellipse(center=(0, 0), r=(2, 2.0*v), fill='black'))
radius_angle = radians(-40.0)
csr = cos(radius_angle), sin(radius_angle)
disk.add(doc.line(start=(0,0), end=(rx*csr[0], ry*csr[1]),
    stroke_width=lw*sqrt(csr[0]**2 + (v*csr[1])**2)))
# round arrow
ar, aw, ah, ab, al, a0, a1 = 0.7*rx, 7, 2, 1, 3, radians(160), radians(100)
apath = 'M ' + str(ar*cos(a0)) + ',' + str(ar*sin(a0))
apath += ' A %f,%f 0 0 0 %f,%f' % (ar, ar, ar*cos(a1), ar*sin(a1))
arrowhead = doc.defs.add(doc.marker(id='arrowhead', orient='auto', overflow='visible'))
arrowhead.add(doc.path(fill='black', stroke='none',
    d='M 0.0,0.0 L %f,%f L %f,0 L %f,%f L 0,0 z'%(-ab, -ah, al, -ab, ah)))
arrow = doc.path(d=apath, fill='none', stroke_width=aw, transform='scale(1,' + str(v) + ')')
arrow['marker-end'] = arrowhead.get_funciri()
disk.add(arrow)

# ruler
ruler = doc.defs.add(doc.g(id='ruler'))
rw, rh, rn = 32, 14, 4
ruler.add(doc.path(d='M 0,0 H %f V %f H 0 V 0 Z'%(rw+3, rh),
    fill='white', stroke='none'))
squares = ''
for i in range(rn/2):
    squares += 'M %f,0 H %f V %f H %f V 0 Z '%(i*rw*2./rn, (1+i*2.)*rw/rn, rh, i*rw*2./rn)
ruler.add(doc.path(d=squares, fill='red', stroke='none'))
ruleredge = 'M %f,0 H %f V %f H 0 V 0 H %f V %f'%(rw, 3+rw, rh, rw, rh)
for i in range(1, rn):
    ruleredge += ' M %f,0 V %f'%(i*rw/float(rn), rh/2.)
ruler.add(doc.path(d=ruleredge, fill='none', stroke='black', stroke_width=lw, stroke_linecap='round'))
rulers = doc.add(doc.g(id='rulers'))
rulers.add(doc.use(ruler, insert=(0, 0), transform='matrix(0.89, 0.42, 0, 1, 17, 134)'))
rulers.add(doc.use(ruler, insert=(0, 0), transform='matrix(1.00, 0.16, 0, 1, 54, 150)'))
rulers.add(doc.use(ruler, insert=(0, 0), transform='matrix(1.00, 0.00, 0, 1, 95, 156)'))
rulers.add(doc.use(ruler, insert=(0, 0), transform='matrix(0.53, 0.33, 0, 1, 16.53, 91)'))
rulers.add(doc.use(ruler, insert=(0, 0), transform='matrix(0.57, 0.19, 0, 1, 39, 104)'))
rulers.add(doc.use(ruler, insert=(0, 0), transform='matrix(0.60, 0.10, 0, 1, 63, 112)'))
doc.add(doc.path(d='M 16.5,106 V 133', fill='none', stroke_width=1, stroke_dasharray='4,2'))
doc.add(doc.path(d='M 84.5,130 V 154', fill='none', stroke_width=1, stroke_dasharray='4,2'))

# text
doc.add(doc.path(id='omega', stroke='none', fill='black',
transform='translate(70,70) scale(0.03,-0.03)',
d='M 13 0 m 251 82 c 9 -63 43 -93 94 -93 c 59 0 113 38 153 93 c 75 104 94 \
255 94 289 c 0 71 -37 71 -43 71 c -25 0 -50 -26 -50 -48 c 0 -13 6 -19 15 -27 \
c 32 -33 35 -65 35 -87 c 0 -85 -85 -219 -190 -219 c -9 0 -37 0 -55 23 c -12 \
16 -20 35 -20 55 c 0 3 0 5 6 16 c 19 45 33 100 33 113 c 0 12 -7 23 -21 23 c \
-11 0 -20 -9 -28 -25 c -2 -5 -14 -49 -21 -101 c -2 -18 -2 -20 -9 -27 c -44 \
-61 -90 -77 -124 -77 c -66 0 -88 55 -88 114 c 0 75 37 158 84 225 c 10 14 10 \
16 10 19 c 0 8 -6 12 -12 12 c -16 0 -62 -88 -76 -120 c -37 -89 -38 -171 -38 \
-180 c 0 -80 30 -142 106 -142 c 65 0 113 46 145 93 z'))
doc.add(doc.path(id='r', stroke='none', fill='black',
transform='translate(152,60) scale(0.03,-0.03)',
d='M 29 0 m 59 59 c -3 -15 -9 -38 -9 -43 c 0 -18 14 -27 29 -27 c 12 0 30 8 \
37 28 c 2 4 36 140 40 158 c 8 33 26 103 32 130 c 4 13 32 60 56 82 c 8 7 37 33 \
80 33 c 26 0 41 -12 42 -12 c -30 -5 -52 -29 -52 -55 c 0 -16 11 -35 38 -35 c \
27 0 55 23 55 59 c 0 35 -32 65 -83 65 c -65 0 -109 -49 -128 -77 c -8 45 -44 \
77 -91 77 c -46 0 -65 -39 -74 -57 c -18 -34 -31 -94 -31 -97 c 0 -10 10 -10 12 \
-10 c 10 0 11 1 17 23 c 17 71 37 119 73 119 c 17 0 31 -8 31 -46 c 0 -21 -3 \
-32 -16 -84 z'))

doc.save()

Lisanslama

Ben, bu işin telif sahibi, burada işi aşağıdaki lisanslar altında yayımlıyorum:
GNU head Bu belgenin GNU Özgür Belgeleme Lisansı, Sürüm 1.2 veya Özgür Yazılım Vakfı tarafından yayımlanan sonraki herhangi bir sürüm şartları altında bu belgenin kopyalanması, dağıtılması ve/veya değiştirilmesi için izin verilmiştir;

Değişmeyen Bölümler, Ön Kapak Metinleri ve Arka Kapak Metinleri yoktur. Lisansın bir kopyası GNU Özgür Belgeleme Lisansı sayfasında yer almaktadır.http://www.gnu.org/copyleft/fdl.htmlGFDLGNU Free Documentation Licensetruetrue

w:tr:Creative Commons
atıf
Bu dosya, Creative Commons Atıf 3.0 Uluslararası lisansı ile lisanslanmıştır
Şu seçeneklerde özgürsünüz:
  • paylaşım – eser paylaşımı, dağıtımı ve iletimi
  • içeriği değiştirip uyarlama – eser adaptasyonu
Aşağıdaki koşullar geçerli olacaktır:
  • atıf – Esere yazar veya lisans sahibi tarafından belirtilen (ancak sizi ya da eseri kullanımınızı desteklediklerini ileri sürmeyecek bir) şekilde atıfta bulunmalısınız.
https://creativecommons.org/licenses/by/3.0CC BY 3.0 Creative Commons Attribution 3.0 truetrue
İstediğiniz lisansı seçebilirsiniz.

Altyazılar

Bu dosyanın temsil ettiği şeyin tek satırlık açıklamasını ekleyin.

Bu dosyada gösterilen öğeler

betimlenen

yaratıcı

Vikiveri ögesi olmayan bir değer

bağlantısı olmayan yazarı: Geek3
URL: https://commons.wikimedia.org/wiki/user:Geek3
Wikimedia kullanıcı adı: Geek3

telif hakkı durumu

telif hakkı alınmış

telif hakkı lisansı

CC BY 3.0

GNU Free Documentation License, version 1.2 or later İngilizce

dosya kaynağı

yükleyicinin orijinal eseri

kuruluşu

21 Ocak 2013

Dosya geçmişi

Dosyanın herhangi bir zamandaki hâli için ilgili tarih/saat kısmına tıklayın.

Tarih/SaatKüçük resimBoyutlarKullanıcıYorum
güncel00.35, 21 Ocak 201300.35, 21 Ocak 2013 tarihindeki sürümün küçültülmüş hâli220 × 180 (4 KB)Geek3{{Information |Description ={{en|1=Ehrenfest paradox illustration}} |Source ={{own}} |Author =Geek3 |Date ={{Date|2013|01|21}} |Permission = |other_versions = }}

Dosya kullanımı

Bu görüntü dosyasına bağlantısı olan sayfalar:

  • Ehrenfest paradoksu

Küresel dosya kullanımı

Aşağıdaki diğer vikiler bu dosyayı kullanmaktadır:

  • en.wikipedia.org üzerinde kullanımı
    • Ehrenfest paradox
  • es.wikipedia.org üzerinde kullanımı
    • Paradoja de Ehrenfest
  • fr.wikipedia.org üzerinde kullanımı
    • Paradoxe d'Ehrenfest
    • Contraction des longueurs
    • Utilisateur:Jean-Christophe BENOIST/Rotation relativiste
    • Utilisateur:Observateur01/Brouillon6
  • uk.wikipedia.org üzerinde kullanımı
    • Парадокс Еренфеста
  • www.wikidata.org üzerinde kullanımı
    • Q988429

Üstveri

Bu dosyada, muhtemelen fotoğraf makinesi ya da tarayıcı tarafından eklenmiş ek bilgiler mevcuttur. Eğer dosyada sonradan değişiklik yapıldıysa, bazı bilgiler yeni değişikliğe göre eski kalmış olabilir.

Kısa başlıkEhrenfest-paradox-disk.svg - Illustration of the Ehrenfest paradox in special relativity
Resim başlığıThe Ehrenfest paradox in special relativity
    (http://en.wikipedia.org/wiki/Ehrenfest_paradox) describes a spinning
    cylinder, which should contract around the circumference due to
    Lorentz-contraction, while its radius remains constant. The graphic shows
    rulers which rest in the laboratory system and rulers attached to the
    cylinder, which get contracted relatively to the laboratory system.
    from Wikimedia Commons
    about: http://commons.wikimedia.org/wiki/Image:Ehrenfest-paradox-disk.svg
    source: http://commons.wikimedia.org/
    rights: GNU Free Documentation license,
Creative Commons Attribution ShareAlike license
Genişlik220
Yükseklik180
"https://tr.wikipedia.org/wiki/Dosya:Ehrenfest-paradox-disk.svg" sayfasından alınmıştır
  • Gizlilik politikası
  • Vikipedi hakkında
  • Sorumluluk reddi
  • Davranış Kuralları
  • Geliştiriciler
  • İstatistikler
  • Çerez politikası
  • Mobil görünüm
  • Wikimedia Foundation
  • Powered by MediaWiki
Dosya:Ehrenfest-paradox-disk.svg
Konu ekle