Gödel'in eksiklik teoremi - Vikipedi
İçeriğe atla
Ana menü
Gezinti
  • Anasayfa
  • Hakkımızda
  • İçindekiler
  • Rastgele madde
  • Seçkin içerik
  • Yakınımdakiler
Katılım
  • Deneme tahtası
  • Köy çeşmesi
  • Son değişiklikler
  • Dosya yükle
  • Topluluk portalı
  • Wikimedia dükkânı
  • Yardım
  • Özel sayfalar
Vikipedi Özgür Ansiklopedi
Ara
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç

İçindekiler

  • Giriş
  • 1 Tarihi
  • 2 Eubulides Paradoksu
  • 3 Paralellik Beliti
  • 4 Ayrıca bakınız
  • 5 Kaynakça

Gödel'in eksiklik teoremi

  • Alemannisch
  • العربية
  • Asturianu
  • Български
  • Bosanski
  • Català
  • Čeština
  • Чӑвашла
  • Dansk
  • Deutsch
  • Ελληνικά
  • English
  • Esperanto
  • Español
  • Eesti
  • Euskara
  • فارسی
  • Suomi
  • Français
  • Gaeilge
  • Galego
  • עברית
  • हिन्दी
  • Hrvatski
  • Magyar
  • Bahasa Indonesia
  • Ido
  • İtaliano
  • 日本語
  • ქართული
  • ಕನ್ನಡ
  • 한국어
  • Latina
  • Монгол
  • မြန်မာဘာသာ
  • Nederlands
  • Norsk nynorsk
  • Norsk bokmål
  • Novial
  • ਪੰਜਾਬੀ
  • Polski
  • Português
  • ရခိုင်
  • Русский
  • Sicilianu
  • Simple English
  • Slovenčina
  • Српски / srpski
  • Svenska
  • ไทย
  • Українська
  • اردو
  • Tiếng Việt
  • 中文
  • 粵語
Bağlantıları değiştir
  • Madde
  • Tartışma
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Araçlar
Eylemler
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Genel
  • Sayfaya bağlantılar
  • İlgili değişiklikler
  • Kalıcı bağlantı
  • Sayfa bilgisi
  • Bu sayfayı kaynak göster
  • Kısaltılmış URL'yi al
  • Karekodu indir
Yazdır/dışa aktar
  • Bir kitap oluştur
  • PDF olarak indir
  • Basılmaya uygun görünüm
Diğer projelerde
  • Vikiveri ögesi
Görünüm
Vikipedi, özgür ansiklopedi
(Eksiklik teoremi sayfasından yönlendirildi)
Bu maddede birçok sorun bulunmaktadır. Lütfen sayfayı geliştirin veya bu sorunlar konusunda tartışma sayfasında bir yorum yapın.
Bu madde, Vikipedi biçem el kitabına uygun değildir. Maddeyi, Vikipedi standartlarına uygun biçimde düzenleyerek Vikipedi'ye katkıda bulunabilirsiniz. Gerekli düzenleme yapılmadan bu şablon kaldırılmamalıdır. (Şubat 2024)
Bu maddede kullanılan kırmızı bağlantıların Vikipedi yönergelerine uymadığı düşünülmektedir. Bu maddedeki gereksiz kırmızı bağlantıları kaldırarak varolan bağlantı eklemeye çalışın. (Şubat 2024)
Bu maddenin daha erişilebilir olması için konusuna göre başlıklara bölünmesi gerekmektedir. Lütfen Biçem el kitabına uygun bir şekilde bölüm başlık ve alt başlıkları ekleyerek maddeyi düzenleyin.
Bu maddenin veya maddenin bir bölümünün gelişebilmesi için Matematik konusunda uzman kişilere gereksinim duyulmaktadır.
Ayrıntılar için lütfen tartışma sayfasını inceleyin veya yeni bir tartışma başlatın.
Konu hakkında uzman birini bulmaya yardımcı olarak ya da maddeye gerekli bilgileri ekleyerek Vikipedi'ye katkıda bulunabilirsiniz.
(Şubat 2024)

Şablon:Ana kaynaklar

Bu maddedeki üslubun, ansiklopedik bir yazıdan beklenen resmî ve ciddi üsluba uygun olmadığı düşünülmektedir. Maddeyi geliştirerek ya da konuyla ilgili tartışmaya katılarak Vikipedi'ye katkıda bulunabilirsiniz.

Eksiklik Teoremi, Kurt Gödel'in 1931 yılında doktorasında yer verdiği "Principia Mathematica Gibi Dizgelerin Biçimsel Olarak Karar Verilemeyen Önermeleri Üzerine" başlıklı makalesinde 4. önerme olarak geçer. Sezgisel olarak matematikte belitlere (aksiyom) dayanan her sistemin tutarlı olması dahilinde eksik olması gerektiğini bildirir.

Tarihi

[değiştir | kaynağı değiştir]

Ünlü Alman matematikçi David Hilbert, matematikteki tüm ispatların, belli bir sabit yöntem veya yöntemler bütünü ile, yani aksiyomatik bir sistem vasıtasıyla elde edilebileceğini düşünüyordu ve bu doğrultuda çalışmalarına başladı. Temel aritmetikteki tüm doğruları, aksiyomlarından türetebilir ise, matematikteki tüm doğruları da bu aksiyom yapılarından elde edebilecekti.

Hilbert'in çağdaşı olan Gödel, bunun olanaksız olduğunu göstermiştir. Bunu kısaca şu şekilde kanıtlamıştır: "Bu önerme ispatlanamaz.'" ifadesini (G) aritmetik sisteminde formüle etmiştir. Aynı şekilde, G ifadesinin olumsuz hali olan "Bu önerme ispatlanabilir" ifadesini de matematiksel olarak ifade etmiştir. Daha sonra, eğer G ifadesinin aritmetik olarak doğruluğu hesaplanabiliyorsa, G ifadesinin olumsuz halinin de hesaplanabilir olacağını göstermiştir.

Gödel buradan şu iki sonuca varmıştır:

  1. Ögesel aritmetik içeren aksiyomatik bir sistem tutarlı ise eksiksiz değildir.
  2. Ögesel aritmetik içeren aksiyomatik bir sistemin tutarlılığını sistemin kendi içinden (sistemin kendi formüllerini ve işlemlerini kullanarak) ispatlamak mümkün değildir.

Gödel, bu teoremle Hilbert programı'nda sorduğu "Matematik tam mıdır?" sorusuna hayır yanıtını verir. Hilbert, matematiği paradokslardan ve tutarsızlıklardan kurtarmak amacıyla, sınırlı ve tam bir aksiyomlar kümesi ile tüm mevcut teoremlere sağlam bir zemin kurmayı amaçlamış ve gerçel analiz gibi karmaşık sistemlerin bu zemin üzerine oturmuş daha basit sistemler ile kanıtlanabileceğini önermişti. Tüm matematiğin tutarlılığını basit aritmetiğe indirgemeyi amaçlayan bu çaba, eksiklik teoremi ile boşa çıkmıştır.

İşin ilginç tarafı, bu G ifadesi sistemin içine bir aksiyom olarak yerleştirilse bile, yeni bir Gödel cümlesi çıkartılabilir. Yani ne kadar aksiyom eklersek ekleyelim, böyle bir sistemde doğruluğu ya da yanlışlığı ispatlanamayacak bir Gödel cümlesi bulunacaktır.

Gödel'in ifadesiyle: "Her ω {\displaystyle \omega } {\displaystyle \omega }-tutarlı yinelgen tamdeyimler sınıfı K'ya öyle yinelgen r sınıf-imleri tekabül eder ki, bu durumda, ne vGnr ne de ~(vGnr), Flg(K)'ya ait olur (Burada v, r'nin bağsız değişkenidir)."

Daha sade bir anlatımla, "Sayı kuramının bütün tutarlı ilksavlı formülasyonları karar verilemeyen önermeler içerir."

Bu önermeyi biraz açacak olursak, tutarlı biçimsel bir dizge (sistem) kurallara ve belitlere dayanıyorsa bu dizge kesinlikle karar verilemeyen (ne doğru ne de yanlış olduğu kanıtlanabilen) önermeler içerecektir. Gödel'in ikinci teoremi, her biçimsel dizgenin sayılar kuramına eşbiçimli (izomorfik) olduğunu söyler. Bu durumda bu teoremle, sayı kuramının her formülasyonunun eksik olması gerektiği kanıtlanmıştır.

Bu karar verilemeyen önermeler için en çok bilinen örnekler, sayılar kuramında Seçim Beliti, geometride Paralellik Beliti, mantıkta Eubulides Paradoksu'dur.

Eubulides Paradoksu

[değiştir | kaynağı değiştir]

En çarpıcı ve yalın olanı Eublides Paradoksu'dur. "Bu önerme yanlıştır." önermesi karar verilemez bir önermedir. Önerme yanlış olduğu varsayılırsa doğru olduğunu ama doğru olduğu varsayılırsa yanlış olduğunu gösteriyor. Bu tür kendi hakkında konuşan önermelere "kendine-göndergeli önerme" terimi ilk Douglas R. Hofstadter 1989'da çıkan "Gödel, Escher, Bach" kitabında kullanmıştır.

Paralellik Beliti

[değiştir | kaynağı değiştir]

Pek açık olmayan bir örnek ise Paralellik Belitidir. Euclides (Öklit) M.Ö. 300'de yazmış olduğu ve hala geçerli olan geometri kitabı Elementleri sezgisel olarak 5 belite dayandırır. Bu 5 belitten sonuncusunun diğer dördünden farklı olduğu göze çarpmış ve matematikçiler bu beliti kanıtlamak için çok uğraşlar vermişlerdir ama kimse başaramamıştır. Daha sonra Lobachevsky, Bolyai ve gizlice Gauss birbirlerinden habersiz bu beş belitin tersinin alınarak da başka bir geometriye ulaşılabileceğini gösterdiler. Belit Playfair'in versiyonuyla "Bir doğrunun dışındaki bir noktadan geçen ve o doğruya paralel olan sadece ve sadece bir doğru bulunur." önermesidir. Bu önermenin tersi olan "... en az iki doğru bulunur" önermesi hiperbolik geometri (ya da Lobachevsky-Bolyai-Gauss Geometrisi) diye yeni bir geometriye kapı açmıştır.

Bu örnekle Gödel'in bu teoreminin aslında matematikte dizgeleri (sistemleri) dallara ayırarak yeni kapılar araladığı görülebilir.

Ayrıca bakınız

[değiştir | kaynağı değiştir]
  • Tutarlılık
  • Önermeler mantığı
  • Öklid dışı geometri
  • Paradoks

Kaynakça

[değiştir | kaynağı değiştir]
  • Gödel Teoreminin Yapay Zeka Üzerine 24 Mayıs 2005 tarihinde Wayback Machine sitesinde arşivlendi.
Otorite kontrolü Bunu Vikiveri'de düzenleyin
  • BNF: cb119412145 (data)
  • GND: 4021417-5
  • LCCN: sh85055601
  • LNB: 000138852
  • NKC: ph920022
  • NLI: 987007533661305171
"https://tr.wikipedia.org/w/index.php?title=Gödel%27in_eksiklik_teoremi&oldid=35736602" sayfasından alınmıştır
Kategoriler:
  • Matematik teoremleri
  • Mantık
Gizli kategoriler:
  • Düzenlenmesi gereken maddeler Şubat 2024
  • Vikipedi temizleme Şubat 2024
  • Başlıklara bölünmesi gereken maddeler
  • Uzman ilgisi gerektiren maddeler Şubat 2024
  • Matematik konusunda uzman ilgisi gerektiren maddeler
  • Vikipedi üslubunu düzenle
  • Webarşiv şablonu wayback bağlantıları
  • BNF tanımlayıcısı olan Vikipedi maddeleri
  • GND tanımlayıcısı olan Vikipedi maddeleri
  • LCCN tanımlayıcısı olan Vikipedi maddeleri
  • LNB tanımlayıcısı olan Vikipedi maddeleri
  • NKC tanımlayıcısı olan Vikipedi maddeleri
  • NLI tanımlayıcısı olan Vikipedi maddeleri
  • Sayfa en son 17.50, 28 Temmuz 2025 tarihinde değiştirildi.
  • Metin Creative Commons Atıf-AynıLisanslaPaylaş Lisansı altındadır ve ek koşullar uygulanabilir. Bu siteyi kullanarak Kullanım Şartlarını ve Gizlilik Politikasını kabul etmiş olursunuz.
    Vikipedi® (ve Wikipedia®) kâr amacı gütmeyen kuruluş olan Wikimedia Foundation, Inc. tescilli markasıdır.
  • Gizlilik politikası
  • Vikipedi hakkında
  • Sorumluluk reddi
  • Davranış Kuralları
  • Geliştiriciler
  • İstatistikler
  • Çerez politikası
  • Mobil görünüm
  • Wikimedia Foundation
  • Powered by MediaWiki
Gödel'in eksiklik teoremi
Konu ekle