Kök (matematik) - Vikipedi
İçeriğe atla
Ana menü
Gezinti
  • Anasayfa
  • Hakkımızda
  • İçindekiler
  • Rastgele madde
  • Seçkin içerik
  • Yakınımdakiler
Katılım
  • Deneme tahtası
  • Köy çeşmesi
  • Son değişiklikler
  • Dosya yükle
  • Topluluk portalı
  • Wikimedia dükkânı
  • Yardım
  • Özel sayfalar
Vikipedi Özgür Ansiklopedi
Ara
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç

İçindekiler

  • Giriş
  • 1 Ayrıca bakınız

Kök (matematik)

  • Afrikaans
  • العربية
  • Беларуская
  • Bosanski
  • Català
  • کوردی
  • Čeština
  • Чӑвашла
  • Dansk
  • Deutsch
  • Ελληνικά
  • English
  • Esperanto
  • Español
  • فارسی
  • Suomi
  • Français
  • Galego
  • עברית
  • हिन्दी
  • Hrvatski
  • Magyar
  • Հայերեն
  • Bahasa Indonesia
  • Ido
  • Íslenska
  • İtaliano
  • 日本語
  • 한국어
  • Nederlands
  • Norsk bokmål
  • Polski
  • Português
  • Română
  • Русский
  • Srpskohrvatski / српскохрватски
  • Simple English
  • Slovenščina
  • Shqip
  • Српски / srpski
  • Svenska
  • தமிழ்
  • ไทย
  • Tagalog
  • Українська
  • اردو
  • Tiếng Việt
  • 中文
  • 粵語
Bağlantıları değiştir
  • Madde
  • Tartışma
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Araçlar
Eylemler
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Genel
  • Sayfaya bağlantılar
  • İlgili değişiklikler
  • Kalıcı bağlantı
  • Sayfa bilgisi
  • Bu sayfayı kaynak göster
  • Kısaltılmış URL'yi al
  • Karekodu indir
Yazdır/dışa aktar
  • Bir kitap oluştur
  • PDF olarak indir
  • Basılmaya uygun görünüm
Diğer projelerde
  • Vikiveri ögesi
Görünüm
Vikipedi, özgür ansiklopedi
(Kök alma sayfasından yönlendirildi)
ƒ(x)=cosx fonksiyonunun [-2π,2π] aralığındaki grafiği ve kökleri (kırmızı ile gösterilmiştir)

Matematikte gerçel, karmaşık veya daha genel bir anlamda vektör değerli bir fonksiyonun kökü, fonksiyonun tanım kümesinde bulunan ve fonksiyonun 0 değerini aldığı noktalardır. Yani, eğer bir V kümesinden bir W vektör uzayına tanımlı bir fonksiyonu

f : V → W {\displaystyle f:V\to W} {\displaystyle f:V\to W}

varsa ve

x ∈ V ,   f ( x ) = 0 ∈ W {\displaystyle x\in V,\ f(x)=0\in W} {\displaystyle x\in V,\ f(x)=0\in W}

koşulunu sağlıyorsa, o zaman x {\displaystyle x} {\displaystyle x}, f   {\displaystyle f\ } {\displaystyle f\ }'nin bir köküdür. Bir fonksiyonun kökü ile fonksiyonun 0 noktasında (eğer 0 tanım kümesinin bir elemanıysa) aldığı değer karıştırılmamalıdır. Eğer bir fonksiyon, gerçel sayılardan gerçel sayılara tanımlıysa, o zaman kökleri x-eksenini kestiği noktalardadır.

Bir fonksiyonun kökünden bahsedilirken, tanım kümesi ve değer kümesinden bahsedilmelidir. Mesela, p ( x ) = x 2 + 1 {\displaystyle p(x)=x^{2}+1} {\displaystyle p(x)=x^{2}+1} fonksiyonunun gerçel bir kökü yokken karmaşık değerli iki kökü vardır ve bunlar da i {\displaystyle i} {\displaystyle i} ve − i {\displaystyle -i} {\displaystyle -i} karmaşık sayılarıdır.

Belli başlı bazı fonksiyonların, özellikle polinomların, köklerini bulmak uygulamada yararlı sonuçlar getiren; ancak bazı teknikler de gerektiren bir uğraştır. Kökleri bulmaya yarayan bu tekniklere Newton yöntemi örnek olarak gösterilebilir. Karmaşık sayılar, ikinci ve üçüncü dereceden negatif diskriminanta sahip denklemlerin köklerini bulmaya çalışırken ortaya çıkmıştır.

Gerçel katsayılı ve gerçel değerler alan her tek dereceli polinomun en az bir tane kökü vardır; ancak yukarıda verilen örnekte de görüldüğü üzere çift dereceli fonksiyonların böyle bir özelliği yoktur. Diğer taraftan, Cebirin temel teoremi de karmaşık düzlemde n dereceli her polinomun n tane karmaşık kökü (dereceleri de sayılarak) olduğunu söylemektedir. Bu tür polinomların gerçel olmayan karmaşık değerli kökleri çift halinde gelmektedir: z   {\displaystyle z\ } {\displaystyle z\ } bir kök ise z ¯ {\displaystyle {\bar {z}}} {\displaystyle {\bar {z}}} de bir köktür. Viète formülleri ise bir polinomun köklerinin toplamları ve çarpımlarıyla polinomun katsayıları arasındaki ilişkiyi ifade etmektedir.

Matematikte çözülememiş problemlerden birisi de Riemann zeta fonksiyonunun bayağı olmayan köklerinin hepsinin karmaşık düzlemdeki R e ( z ) = 1 2 {\displaystyle Re(z)={\frac {1}{2}}} {\displaystyle Re(z)={\frac {1}{2}}} doğrusu üzerinde olduğunu göstermektir.

Ayrıca bakınız

[değiştir | kaynağı değiştir]
  • Sıfır (karmaşık analiz)
  • Kutup (karmaşık analiz)
"https://tr.wikipedia.org/w/index.php?title=Kök_(matematik)&oldid=30493143" sayfasından alınmıştır
Kategori:
  • İşlevler
  • Sayfa en son 16.39, 31 Ekim 2023 tarihinde değiştirildi.
  • Metin Creative Commons Atıf-AynıLisanslaPaylaş Lisansı altındadır ve ek koşullar uygulanabilir. Bu siteyi kullanarak Kullanım Şartlarını ve Gizlilik Politikasını kabul etmiş olursunuz.
    Vikipedi® (ve Wikipedia®) kâr amacı gütmeyen kuruluş olan Wikimedia Foundation, Inc. tescilli markasıdır.
  • Gizlilik politikası
  • Vikipedi hakkında
  • Sorumluluk reddi
  • Davranış Kuralları
  • Geliştiriciler
  • İstatistikler
  • Çerez politikası
  • Mobil görünüm
  • Wikimedia Foundation
  • Powered by MediaWiki
Kök (matematik)
Konu ekle