Tıkızlık - Vikipedi
İçeriğe atla
Ana menü
Gezinti
  • Anasayfa
  • Hakkımızda
  • İçindekiler
  • Rastgele madde
  • Seçkin içerik
  • Yakınımdakiler
Katılım
  • Deneme tahtası
  • Köy çeşmesi
  • Son değişiklikler
  • Dosya yükle
  • Topluluk portalı
  • Wikimedia dükkânı
  • Yardım
  • Özel sayfalar
Vikipedi Özgür Ansiklopedi
Ara
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç

İçindekiler

  • Giriş
  • 1 Tıkızlık kavramının uygulamalarına örnek

Tıkızlık

  • العربية
  • Asturianu
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • English
  • Esperanto
  • Español
  • Euskara
  • فارسی
  • Suomi
  • Français
  • Galego
  • עברית
  • Magyar
  • Bahasa Indonesia
  • Íslenska
  • İtaliano
  • 日本語
  • Қазақша
  • 한국어
  • Кыргызча
  • Nederlands
  • Polski
  • Português
  • Română
  • Русский
  • Simple English
  • Slovenčina
  • Српски / srpski
  • Svenska
  • Українська
  • Tiếng Việt
  • 吴语
  • 中文
  • 文言
  • 粵語
Bağlantıları değiştir
  • Madde
  • Tartışma
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Araçlar
Eylemler
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Genel
  • Sayfaya bağlantılar
  • İlgili değişiklikler
  • Kalıcı bağlantı
  • Sayfa bilgisi
  • Bu sayfayı kaynak göster
  • Kısaltılmış URL'yi al
  • Karekodu indir
Yazdır/dışa aktar
  • Bir kitap oluştur
  • PDF olarak indir
  • Basılmaya uygun görünüm
Diğer projelerde
  • Wikimedia Commons
  • Vikiveri ögesi
Görünüm
Vikipedi, özgür ansiklopedi
(Kompakt uzay sayfasından yönlendirildi)
Bu madde hiçbir kaynak içermemektedir. Lütfen güvenilir kaynaklar ekleyerek madde içeriğinin geliştirilmesine yardımcı olun. Kaynaksız içerik itiraz konusu olabilir ve kaldırılabilir.
Kaynak ara: "Tıkızlık" – haber · gazete · kitap · akademik · JSTOR
(Temmuz 2024) (Bu şablonun nasıl ve ne zaman kaldırılması gerektiğini öğrenin)

Tıkızlık, topolojik uzayların sahip olabileceği başlıca özelliklerden biridir. Bir X uzayı ve birleşimleri X uzayını kaplayan herhangi bir açık kümeler topluluğu verildiğinde, bu topluluğun içinden sonlu sayıda açık küme hala X uzayını kaplayabiliyorsa, X uzayına tıkız (kompakt) denir. Gerçel sayılar kümesi (ℜ), üzerindeki standart topolojiye göre tıkız değildir, ancak ℜ'nin her kapalı ve sınırlı alt kümesi (mesela a ve b (a<b) gerçel sayıları için [a, b] şeklindeki alt kümeler) altuzay topolojisine göre tıkızdır (Heine Borel teoremi). Matematiğin diğer pek çok alanında olduğu gibi, sonsuz bir nesnenin sonlu bir nesneye indirgenebilmesi çok önemli avantajlar sağladığı için topoloji alanında ve topolojik yöntemler kullanan diğer alanlarda vazgeçilmez bir kavramdır.

Tıkızlık kavramı, Matematiğe 1906 yılında Maurice Fréchet tarafından kazandırılmıştır. Tıkızlık, matematiğin analiz dalı için çok önemli bir yere sahiptir. 19. yüzyılda analize Maksimum değer teoremi [en] gibi birçok klasik ve önemli teoremi kazandırmıştır.

Tıkızlık kavramının uygulamalarına örnek

[değiştir | kaynağı değiştir]
  • Gerçel değerli bir f fonksiyonu eğer tıkız bir küme üzerinde sürekli ise o zaman aslında o küme üzerinde düzgün süreklidir.
  • Tıkız bir uzaydan kalkıp ℜ'ye giden herhangi bir fonksiyonun en büyük ve en küçük değerlerini aldığı birer nokta mutlaka vardır.
"https://tr.wikipedia.org/w/index.php?title=Tıkızlık&oldid=35864661" sayfasından alınmıştır
Kategori:
  • Topoloji
Gizli kategori:
  • Kaynakları olmayan maddeler Temmuz 2024
  • Sayfa en son 16.10, 18 Ağustos 2025 tarihinde değiştirildi.
  • Metin Creative Commons Atıf-AynıLisanslaPaylaş Lisansı altındadır ve ek koşullar uygulanabilir. Bu siteyi kullanarak Kullanım Şartlarını ve Gizlilik Politikasını kabul etmiş olursunuz.
    Vikipedi® (ve Wikipedia®) kâr amacı gütmeyen kuruluş olan Wikimedia Foundation, Inc. tescilli markasıdır.
  • Gizlilik politikası
  • Vikipedi hakkında
  • Sorumluluk reddi
  • Davranış Kuralları
  • Geliştiriciler
  • İstatistikler
  • Çerez politikası
  • Mobil görünüm
  • Wikimedia Foundation
  • Powered by MediaWiki
Tıkızlık
Konu ekle