Fermat'nın küçük teoremi - Vikipedi
İçeriğe atla
Ana menü
Gezinti
  • Anasayfa
  • Hakkımızda
  • İçindekiler
  • Rastgele madde
  • Seçkin içerik
  • Yakınımdakiler
Katılım
  • Deneme tahtası
  • Köy çeşmesi
  • Son değişiklikler
  • Dosya yükle
  • Topluluk portalı
  • Wikimedia dükkânı
  • Yardım
  • Özel sayfalar
Vikipedi Özgür Ansiklopedi
Ara
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç

Fermat'nın küçük teoremi

  • العربية
  • Беларуская
  • Български
  • বাংলা
  • Català
  • کوردی
  • Čeština
  • Чӑвашла
  • Dansk
  • Deutsch
  • Ελληνικά
  • English
  • Esperanto
  • Español
  • Euskara
  • فارسی
  • Suomi
  • Võro
  • Français
  • Arpetan
  • Galego
  • עברית
  • Magyar
  • Հայերեն
  • Bahasa Indonesia
  • İtaliano
  • 日本語
  • ქართული
  • Қазақша
  • 한국어
  • Lietuvių
  • Latviešu
  • Македонски
  • മലയാളം
  • Монгол
  • Nederlands
  • Norsk bokmål
  • Polski
  • Piemontèis
  • Português
  • Română
  • Русский
  • Srpskohrvatski / српскохрватски
  • Simple English
  • Slovenčina
  • Slovenščina
  • Shqip
  • Српски / srpski
  • Svenska
  • தமிழ்
  • ไทย
  • Українська
  • Oʻzbekcha / ўзбекча
  • Tiếng Việt
  • 中文
Bağlantıları değiştir
  • Madde
  • Tartışma
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Araçlar
Eylemler
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Genel
  • Sayfaya bağlantılar
  • İlgili değişiklikler
  • Kalıcı bağlantı
  • Sayfa bilgisi
  • Bu sayfayı kaynak göster
  • Kısaltılmış URL'yi al
  • Karekodu indir
Yazdır/dışa aktar
  • Bir kitap oluştur
  • PDF olarak indir
  • Basılmaya uygun görünüm
Diğer projelerde
  • Wikimedia Commons
  • Vikiveri ögesi
Görünüm
Vikipedi, özgür ansiklopedi
Fermat'nın Küçük Teoremini gösteren görsel

Fermat'nın küçük teoremine göre her p asal sayısı, a tam sayı ("a" ve "p" aralarında asal) olmak üzere, her a p − a sayısını böler. Bu, modüler aritmetik sembolleriyle

a p ≡ a ( mod p ) . {\displaystyle a^{p}\equiv a{\pmod {p}}.} {\displaystyle a^{p}\equiv a{\pmod {p}}.}

şeklinde gösterilir. Örnek olarak, a = 2 ve p = 7 ise, 27 = 128 ve 128 − 2 = 7 × 18 sayısı 7'nin tam katıdır.

Pierre de Fermat bu bu teoremi öne sürmüş, fakat ispatlamamıştır. Teorem, daha sonra Leonhard Euler tarafından 1736'da ispatlanmıştır.

Teorem asallık testlerinde ve bilgisayarda büyük sayılarla işlemlerde kullanılır.

Taslak simgesiMatematik ile ilgili bu madde taslak seviyesindedir. Madde içeriğini genişleterek Vikipedi'ye katkı sağlayabilirsiniz.
Otorite kontrolü Bunu Vikiveri'de düzenleyin
  • NKC: ph158529
"https://tr.wikipedia.org/w/index.php?title=Fermat%27nın_küçük_teoremi&oldid=34272500" sayfasından alınmıştır
Kategoriler:
  • Matematik taslakları
  • Sayılar teorisi
  • Matematik teoremleri
  • Modüler aritmetik
Gizli kategoriler:
  • Tüm taslak maddeler
  • NKC tanımlayıcısı olan Vikipedi maddeleri
  • Sayfa en son 18.04, 23 Kasım 2024 tarihinde değiştirildi.
  • Metin Creative Commons Atıf-AynıLisanslaPaylaş Lisansı altındadır ve ek koşullar uygulanabilir. Bu siteyi kullanarak Kullanım Şartlarını ve Gizlilik Politikasını kabul etmiş olursunuz.
    Vikipedi® (ve Wikipedia®) kâr amacı gütmeyen kuruluş olan Wikimedia Foundation, Inc. tescilli markasıdır.
  • Gizlilik politikası
  • Vikipedi hakkında
  • Sorumluluk reddi
  • Davranış Kuralları
  • Geliştiriciler
  • İstatistikler
  • Çerez politikası
  • Mobil görünüm
  • Wikimedia Foundation
  • Powered by MediaWiki
Fermat'nın küçük teoremi
Konu ekle