Fourier analizi - Vikipedi
İçeriğe atla
Ana menü
Gezinti
  • Anasayfa
  • Hakkımızda
  • İçindekiler
  • Rastgele madde
  • Seçkin içerik
  • Yakınımdakiler
Katılım
  • Deneme tahtası
  • Köy çeşmesi
  • Son değişiklikler
  • Dosya yükle
  • Topluluk portalı
  • Wikimedia dükkânı
  • Yardım
  • Özel sayfalar
Vikipedi Özgür Ansiklopedi
Ara
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç

İçindekiler

  • Giriş
  • 1 Kaynakça
  • 2 Ayrıca bakınız

Fourier analizi

  • العربية
  • Башҡортса
  • Български
  • বাংলা
  • Català
  • کوردی
  • Deutsch
  • Ελληνικά
  • English
  • Esperanto
  • Español
  • Eesti
  • Euskara
  • فارسی
  • Français
  • Galego
  • हिन्दी
  • Magyar
  • Bahasa Indonesia
  • İtaliano
  • 日本語
  • 한국어
  • Lietuvių
  • Bahasa Melayu
  • Nederlands
  • Norsk bokmål
  • Polski
  • Português
  • Русский
  • Simple English
  • Српски / srpski
  • Sunda
  • Українська
  • Tiếng Việt
  • 中文
  • 粵語
Bağlantıları değiştir
  • Madde
  • Tartışma
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Araçlar
Eylemler
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Genel
  • Sayfaya bağlantılar
  • İlgili değişiklikler
  • Kalıcı bağlantı
  • Sayfa bilgisi
  • Bu sayfayı kaynak göster
  • Kısaltılmış URL'yi al
  • Karekodu indir
Yazdır/dışa aktar
  • Bir kitap oluştur
  • PDF olarak indir
  • Basılmaya uygun görünüm
Diğer projelerde
  • Wikimedia Commons
  • Vikiveri ögesi
Görünüm
Vikipedi, özgür ansiklopedi
Bu madde hiçbir kaynak içermemektedir. Lütfen güvenilir kaynaklar ekleyerek madde içeriğinin geliştirilmesine yardımcı olun. Kaynaksız içerik itiraz konusu olabilir ve kaldırılabilir.
Kaynak ara: "Fourier analizi" – haber · gazete · kitap · akademik · JSTOR
(Mart 2016) (Bu şablonun nasıl ve ne zaman kaldırılması gerektiğini öğrenin)

Fourier analizi, tabiattaki bütün periyodik fonksiyonları birbirine dik iki farklı periodik fonksiyonun artan frekanslardaki değerlerinin dik toplamı şeklinde gösterilebilir. Fourier, bu toplamı sinüs ve kosinüs fonksiyonlarını kullanarak göstermiştir. Günümüzde Euler bağıntısı kullanılarak sinüs ve kosinüs fonksiyonları yerine kompleks üslü sayılar kullanılmaktadır. Fonksiyonların kompleks üslü sayıların toplamı olarak gösterilmesine Fourier serisi gösterimi denir. Fourier açılımı sayesinde fonksiyonların frekansı kolaylıkla belirlenebilir. Bu yaklaşım farklı periyotlarda girdiye maruz kalan sistemlerin çıktısını ve çıktısının frekansını belirlemekte kolaylık sağlar.

Fourier, söz konusu seri açılımını iki farklı yüzeyi farklı ısılarda olan katı bir cismin sıcaklık dağılımını hesaplamak için kullanmıştır. Bu yaklaşım, yoğun bir işlem çabası gerektirdiğinden ve sonuçta yaklaşık sonuç verdiğinden kullanılmamaktadır. Günümüzde Fourier analizi bilgi ve sinyal işleme ve titreşim analizinde kullanılmaktadır.

Kaynakça

[değiştir | kaynağı değiştir]

Ayrıca bakınız

[değiştir | kaynağı değiştir]
  • Fourier dönüşümü
Taslak simgesiMatematik ile ilgili bu madde taslak seviyesindedir. Madde içeriğini genişleterek Vikipedi'ye katkı sağlayabilirsiniz.
Otorite kontrolü Bunu Vikiveri'de düzenleyin
  • BNE: XX527483
  • BNF: cb11942178c (data)
  • GND: 4023453-8
  • LCCN: sh85051088
  • NKC: ph117564
  • NLI: 987007548251005171
  • SUDOC: 04070890X
"https://tr.wikipedia.org/w/index.php?title=Fourier_analizi&oldid=34208949" sayfasından alınmıştır
Kategoriler:
  • Matematik taslakları
  • Fourier analizi
  • Jean-Baptiste Joseph Fourier
  • Analiz (matematik)
Gizli kategoriler:
  • Kaynakları olmayan maddeler Mart 2016
  • Tüm taslak maddeler
  • BNE tanımlayıcısı olan Vikipedi maddeleri
  • BNF tanımlayıcısı olan Vikipedi maddeleri
  • GND tanımlayıcısı olan Vikipedi maddeleri
  • LCCN tanımlayıcısı olan Vikipedi maddeleri
  • NKC tanımlayıcısı olan Vikipedi maddeleri
  • NLI tanımlayıcısı olan Vikipedi maddeleri
  • SUDOC tanımlayıcısı olan Vikipedi maddeleri
  • Sayfa en son 19.59, 13 Kasım 2024 tarihinde değiştirildi.
  • Metin Creative Commons Atıf-AynıLisanslaPaylaş Lisansı altındadır ve ek koşullar uygulanabilir. Bu siteyi kullanarak Kullanım Şartlarını ve Gizlilik Politikasını kabul etmiş olursunuz.
    Vikipedi® (ve Wikipedia®) kâr amacı gütmeyen kuruluş olan Wikimedia Foundation, Inc. tescilli markasıdır.
  • Gizlilik politikası
  • Vikipedi hakkında
  • Sorumluluk reddi
  • Davranış Kuralları
  • Geliştiriciler
  • İstatistikler
  • Çerez politikası
  • Mobil görünüm
  • Wikimedia Foundation
  • Powered by MediaWiki
Fourier analizi
Konu ekle