Hamilton yolu - Vikipedi
İçeriğe atla
Ana menü
Gezinti
  • Anasayfa
  • Hakkımızda
  • İçindekiler
  • Rastgele madde
  • Seçkin içerik
  • Yakınımdakiler
Katılım
  • Deneme tahtası
  • Köy çeşmesi
  • Son değişiklikler
  • Dosya yükle
  • Topluluk portalı
  • Wikimedia dükkânı
  • Yardım
  • Özel sayfalar
Vikipedi Özgür Ansiklopedi
Ara
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç

İçindekiler

  • Giriş
  • 1 İddia
  • 2 Çözüm fikri
  • 3 İspat
  • 4 Ayrıca bakınız
  • 5 Kaynakça

Hamilton yolu

  • العربية
  • Català
  • Čeština
  • Cymraeg
  • Deutsch
  • English
  • Español
  • Euskara
  • فارسی
  • Suomi
  • Français
  • עברית
  • Magyar
  • Bahasa Indonesia
  • İtaliano
  • 日本語
  • 한국어
  • Lietuvių
  • Nederlands
  • Norsk bokmål
  • Polski
  • Português
  • Română
  • Русский
  • Simple English
  • Slovenščina
  • Српски / srpski
  • Svenska
  • தமிழ்
  • ไทย
  • Українська
  • Tiếng Việt
  • 中文
Bağlantıları değiştir
  • Madde
  • Tartışma
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Araçlar
Eylemler
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Genel
  • Sayfaya bağlantılar
  • İlgili değişiklikler
  • Kalıcı bağlantı
  • Sayfa bilgisi
  • Bu sayfayı kaynak göster
  • Kısaltılmış URL'yi al
  • Karekodu indir
Yazdır/dışa aktar
  • Bir kitap oluştur
  • PDF olarak indir
  • Basılmaya uygun görünüm
Diğer projelerde
  • Wikimedia Commons
  • Vikiveri ögesi
Görünüm
Vikipedi, özgür ansiklopedi
8x8 ızgara graf Hamilton yolları üç örneği

Hamilton Yolu, yönlü veya yönsüz bir grafta Hamilton yolu veya Hamilton devresinin olup olmadığının kararının verilmesinin problemidir.

Yönlü ve yönsüz Hamilton devresi problemi Karp'ın 21 NP-tam probleminden ikisidir.[1] Garey ve Johnson, 1974 senesinde düzlemsel grafikler için yönlü hamilton devresi probleminin ve kübik düzlemsel grafikler için yönsüz hamilton devresi probleminin değişmeden NP-tam kalacağını kısaca göstermişlerdir.[2]

Hamilton yolları, yaygın olarak Gezgin satıcı problemi'nin çözümü için kullanılmaktadır.

İddia

[değiştir | kaynağı değiştir]

Bir graf'taki Hamilton yollarının bulunması NP-tam bir işlemdir.

Çözüm fikri

[değiştir | kaynağı değiştir]

Hampath’in NP bir problem olduğu zaten bilinmektedir.[3]

3SAT ≤ p {\displaystyle \leq _{p}} {\displaystyle \leq _{p}} HAMPATH indirgemesinin doğrulanması durumunda iddia ispatlanmış olacaktır.

İspat

[değiştir | kaynağı değiştir]

Her 3cnf formülü ϕ {\displaystyle \phi } {\displaystyle \phi } için, s ve t düğümleri ile yönlü graf G’nin nasıl oluşturulacağı gösterilecektir.

Eğer ϕ {\displaystyle \phi } {\displaystyle \phi } şartları sağlıyorsa, s ve t arasında bir hamilton yolu bulunmaktadır.

k adet clause’dan oluşan 3cnf formülü ϕ {\displaystyle \phi } {\displaystyle \phi } :

Denklemde yer alan her p, q, r ; xi veya xi’ olmak üzere

ϕ {\displaystyle \phi } {\displaystyle \phi }’nın l adet değişken içerdiği varsayılacak olursa denklemde yer alan değişkenler : x1 … xl

ϕ {\displaystyle \phi } {\displaystyle \phi } ’nın graf G’ye dönüştürülmesi işleminde; graf G, ϕ {\displaystyle \phi } {\displaystyle \phi } ’nın içerisindeki değişkenler ve clause’lardan oluşacaktır.

Her değişken xi, aşağıdaki illüstrasyondada olduğu gibi yatayda dizilmiş düğümlerden oluşan elmas şeklindeki bir yapı ile temsil edilecektir. Daha sonra, yatay sırada gözüken düğümlerin sayısı belirlenecektir.


Değişken xi’nin elmas içerisinde tasvir edilmesi


ϕ {\displaystyle \phi } {\displaystyle \phi } ’daki her clase’un tek bir düğüm ile tasvir edilmesi

Aşağıdaki figür, G’nin global yapısını göstermektedir. İllüstrasyon, değişkenlerin clause’lar ile olan ilişkileri haricinde G’nin tüm elemanları ve ilişkilerini göstermektedir.


Graf G’nin Global Yapısı

Ardından, değişkenleri temsil eden elemanlarla clause’ları temsil eden düğümlerin nasıl ilişki içerisinde oldukları gösterilecektir. Yatay sırada 3k+1 adet düğüm ve bunlara ilavaten iki adet başta ve sonda bulunan elmasa dahil düğüm bulunmaktadır. Bu düğümler, her clause için bitişik düğümler oluşturacak şekilde gruplanacak ve bu çiftlerden sonra ekstra ayırıcı bir düğüm bulunacaktır. Tıpkı şekilde de görüldüğü gibi:


Elmas yapısında yer alan yatay düğümler

Eğer değişken xi, clause cj içerisinde yer alıyorsa; i. değişkendeki j. çift ile j. clause ilişki içerisindedir.


Clause cj nin xi yi içermesi durumundaki ilave kenarlar

Eğer xi’, clause cj içerisinde yer alıyorsa; i. değişkendeki j. çift ile j. clause ilişki içerisindedir.

Clause cj nin xi‘ yi içermesi durumundaki ilave kenarlar

Her clause'da her xi veya xi' nin var oluşuna göre eklenecek kenarlar ile, G'nin yapısı tamamlanmış olacaktır. Yol s'den başlayacak, her elmasa sırasıyla uğrayacak t'de son bulacaktır. Elmasta izlenecek yolun bulunması için, ϕ {\displaystyle \phi } {\displaystyle \phi } 'yı sağlayan değerlerden belirlenmek üzere yol ya soldan sağa doğru zig-zag yapacak ya da sağdan sola doğru zag-zig yapacaktır. Şayet xi DOĞRU olarak belirlenmişse yol elmas boyunca zig-zag yapacak, YANLIŞ olarak belirlenmişse yol elmas boyunca zag-zig yapacaktır. Her iki ihtimalde takip eden figürde gösterilmiştir.


Elmas boyunca zig-zag veya zag-zig yapılması denklemde şartları sağlayan değerler tarafından belirlenmektedir.

Böylelikle arzu edilen Hamilton yolu oluşturulmuş olur. Geriye gösterilmesi kalan tek şey Hamilton yolunun normal olmak zorunda olduğudur. Normallik sadece bir yol clause'a bir elmastan girip, clause çıkışında farklı bir elmasa gidiyorsa başarısız olacaktır. Tıpkı illüstrasyonda betimlendiği gibi:

Bu Durum Gerçekleşemez

Yol a1'den C'ye gider, ancak aynı elmastaki a2'ye dönmesi gerekirken, farklı bir elmastaki b2'ye döner. Eğer bu durum olursa, ya a2 ya da a3 ayırıcı düğüm olmak zorundadır. Şayet a2 ayırıcı düğüm olsaydı, a2'ye giren kenarlar yalnızca a1 ve a3'ten olurdu. Eğer a3 ayırıcı düğüm olsaydı, a1 ve a2 aynı clause çifti içerisinde yer alırdı. Bundan ötürüde a2'ye giren kenarlar yalnızca a1, a3 ve c'den olabilirdi. Her iki durumda da, yol a2 düğümünü içermezdi. Yol a2'ye c veya a1'den giremez çünkü yol bu düğümlerden başka bir yere gitmektedir. Yol a2'ye a3'ten giremez çünkü a3, a2'nin işaret ettiği tek mevcut düğüm. Bu yüzden, yol a2'den a3 vasıtasıyla çıkmak zorundadır.

İş bu nedenle, hamilton yolu normal olmak zorundadır. Bu indirgeme açık olarak polinomsal zamanda işler ve ispat tamamlanmış olur.

Ayrıca bakınız

[değiştir | kaynağı değiştir]
  • Gezgin satıcı problemi
  • Sıfır bilgi ispatı10 Şubat 2010 tarihinde Wayback Machine sitesinde arşivlendi.

Kaynakça

[değiştir | kaynağı değiştir]
  1. ^ Wikipedia, Karp's 21 NP-complete problems 1 Mayıs 2010 tarihinde Wayback Machine sitesinde arşivlendi.
  2. ^ M. R. Garey, D. S. Johnson. Some simplified NP-complete problems. Proceedings of the sixth annual ACM symposium on Theory of computing, p. 47-63. 1974.
  3. ^ Michael Sipser: "Introduction to the Theory of Computation" Course Technology Press Second Edition, 2005.


"https://tr.wikipedia.org/w/index.php?title=Hamilton_yolu&oldid=36410393" sayfasından alınmıştır
Kategori:
  • Karmaşıklık teorisi
Gizli kategori:
  • Webarşiv şablonu wayback bağlantıları
  • Sayfa en son 07.17, 18 Kasım 2025 tarihinde değiştirildi.
  • Metin Creative Commons Atıf-AynıLisanslaPaylaş Lisansı altındadır ve ek koşullar uygulanabilir. Bu siteyi kullanarak Kullanım Şartlarını ve Gizlilik Politikasını kabul etmiş olursunuz.
    Vikipedi® (ve Wikipedia®) kâr amacı gütmeyen kuruluş olan Wikimedia Foundation, Inc. tescilli markasıdır.
  • Gizlilik politikası
  • Vikipedi hakkında
  • Sorumluluk reddi
  • Davranış Kuralları
  • Geliştiriciler
  • İstatistikler
  • Çerez politikası
  • Mobil görünüm
  • Wikimedia Foundation
  • Powered by MediaWiki
Hamilton yolu
Konu ekle