Kök bulma algoritması - Vikipedi
İçeriğe atla
Ana menü
Gezinti
  • Anasayfa
  • Hakkımızda
  • İçindekiler
  • Rastgele madde
  • Seçkin içerik
  • Yakınımdakiler
Katılım
  • Deneme tahtası
  • Köy çeşmesi
  • Son değişiklikler
  • Dosya yükle
  • Topluluk portalı
  • Wikimedia dükkânı
  • Yardım
  • Özel sayfalar
Vikipedi Özgür Ansiklopedi
Ara
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç

İçindekiler

  • Giriş
  • 1 Bazı kök bulma algoritmaları
  • 2 Polinomlarda kök bulma algoritmaları

Kök bulma algoritması

  • العربية
  • Català
  • Dansk
  • English
  • Español
  • فارسی
  • Français
  • हिन्दी
  • Magyar
  • İtaliano
  • 日本語
  • 한국어
  • Português
  • Русский
  • Українська
  • 中文
Bağlantıları değiştir
  • Madde
  • Tartışma
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Araçlar
Eylemler
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Genel
  • Sayfaya bağlantılar
  • İlgili değişiklikler
  • Kalıcı bağlantı
  • Sayfa bilgisi
  • Bu sayfayı kaynak göster
  • Kısaltılmış URL'yi al
  • Karekodu indir
Yazdır/dışa aktar
  • Bir kitap oluştur
  • PDF olarak indir
  • Basılmaya uygun görünüm
Diğer projelerde
  • Vikiveri ögesi
Görünüm
Vikipedi, özgür ansiklopedi
(Kök bulma algoritmaları sayfasından yönlendirildi)

Kök bulma algoritması, verilen bir fonksiyonda fonksiyonun değerini sıfır yapacak bir x değerini bulmaya yarayan bir sayısal metot ya da algoritmadır (öyle bir x bul ki f(x) = 0 olsun). Böyle bir x değerine fonksiyonun kökü denir.

f - g kökünü bulma işlemi, f(x) = g(x) denklemini çözmekle aynı işlemdir. Buradaki x değerine ise denklemin bilinmeyeni denir. Bunun yanında her denklem, denklem çözmenin fonksiyonun bilinmeyenini bulmaya eşit olduğu f(x) = 0 şeklinde bir kanonik form alabilir.

Bütün nümerik kök bulma metotları tekrarlama, sonunda kök olacak bir limite yakınsayacak sayı serisi üretme, yöntemini kullanır.

Kök bulma algoritmalarının davranışları nümerik analizde incelenir.

Bazı kök bulma algoritmaları

[değiştir | kaynağı değiştir]

En basit kök bulma algoritması ikiye bölme metodudur. Yalnızca f sürekli fonksiyonsa uygulanabilir. Ayrıca iki ilk tahmine ihtiyacı vardır. Bu ilk tahminler a ve b öyle değerler olmalıdırlarki; f(a) ve f(b)'nin birbirine zıt işaretli olmalıdır.

Bunun yanında Newton metodu, sekant metodu, yanlış pozisyon metodu, Müller metodu, İsa metodu ve Brent metodu gibi algoritmalar kök bulmada kullanılmaktadırlar.

Polinomlarda kök bulma algoritmaları

[değiştir | kaynağı değiştir]

Polinomların köklerini bulmak için özel algoritmalar geliştirilmiştir. Bunlar genel olarak, polinomların kompanyon matrisinin bulunması, Laguerre metodu, Bairstow metodu, Durand-Kerner metodu ve daire bölme metodu gibi algoritmalardır.

Taslak simgesiMatematik ile ilgili bu madde taslak seviyesindedir. Madde içeriğini genişleterek Vikipedi'ye katkı sağlayabilirsiniz.
  • g
  • t
  • d
Kök bulma algoritmaları
Basamaklama metodları
  • İkiye bölme metodu (Bisection method)
  • Yanlış pozisyon metodu (Regula falsi)
İnterpolasyon
  • İnterpolasyon
Yinelemeli metodlar
  • Newton-Raphson metodu
  • Kiriş metodu
  • Muller yöntemi
  • Steffensen metodu
  • Ters interpolasyon
  • Broyden metodu
  • Halley metodu
  • Ridder metodu
Hibrid metodlar
  • Brent metodu
Polinom metodları
  • Bairstow metodu
  • Jenkins–Traub metodu
  • Laguerre metodu
  • Durand-Kerner metodu
  • Aberth–Ehrlich metodu
  • Daire bölme metodu
  • Dandelin–Lobachesky–Graeffe metodu
Grafik metodlar
  • Lill metodu
"https://tr.wikipedia.org/w/index.php?title=Kök_bulma_algoritması&oldid=27411374" sayfasından alınmıştır
Kategoriler:
  • Matematik taslakları
  • Kök bulma algoritmaları
Gizli kategori:
  • Tüm taslak maddeler
  • Sayfa en son 13.01, 24 Mart 2022 tarihinde değiştirildi.
  • Metin Creative Commons Atıf-AynıLisanslaPaylaş Lisansı altındadır ve ek koşullar uygulanabilir. Bu siteyi kullanarak Kullanım Şartlarını ve Gizlilik Politikasını kabul etmiş olursunuz.
    Vikipedi® (ve Wikipedia®) kâr amacı gütmeyen kuruluş olan Wikimedia Foundation, Inc. tescilli markasıdır.
  • Gizlilik politikası
  • Vikipedi hakkında
  • Sorumluluk reddi
  • Davranış Kuralları
  • Geliştiriciler
  • İstatistikler
  • Çerez politikası
  • Mobil görünüm
  • Wikimedia Foundation
  • Powered by MediaWiki
Kök bulma algoritması
Konu ekle