Morse teorisi - Vikipedi
İçeriğe atla
Ana menü
Gezinti
  • Anasayfa
  • Hakkımızda
  • İçindekiler
  • Rastgele madde
  • Seçkin içerik
  • Yakınımdakiler
Katılım
  • Deneme tahtası
  • Köy çeşmesi
  • Son değişiklikler
  • Dosya yükle
  • Topluluk portalı
  • Wikimedia dükkânı
  • Yardım
  • Özel sayfalar
Vikipedi Özgür Ansiklopedi
Ara
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç

İçindekiler

  • Giriş
  • 1 Tanımlar
  • 2 Başlıca savlar
  • 3 Kaynakça

Morse teorisi

  • Deutsch
  • Ελληνικά
  • English
  • Español
  • Français
  • 日本語
  • 한국어
  • Nederlands
  • Русский
  • Українська
  • 中文
Bağlantıları değiştir
  • Madde
  • Tartışma
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Araçlar
Eylemler
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Genel
  • Sayfaya bağlantılar
  • İlgili değişiklikler
  • Kalıcı bağlantı
  • Sayfa bilgisi
  • Bu sayfayı kaynak göster
  • Kısaltılmış URL'yi al
  • Karekodu indir
Yazdır/dışa aktar
  • Bir kitap oluştur
  • PDF olarak indir
  • Basılmaya uygun görünüm
Diğer projelerde
  • Wikimedia Commons
  • Vikiveri ögesi
Görünüm
Vikipedi, özgür ansiklopedi
Bu madde hiçbir kaynak içermemektedir. Lütfen güvenilir kaynaklar ekleyerek madde içeriğinin geliştirilmesine yardımcı olun. Kaynaksız içerik itiraz konusu olabilir ve kaldırılabilir.
Kaynak ara: "Morse teorisi" – haber · gazete · kitap · akademik · JSTOR
(Haziran 2018) (Bu şablonun nasıl ve ne zaman kaldırılması gerektiğini öğrenin)

More teorisi, diferansiyel topolojide, türevlenebilir çokkatlıların topolojisini anlamaya yönelik kuram. Amerikali matematikçi Marston Morse tarafından 1930'larda geliştirilmiştir. Raoul Bott, Stephen Smale, John Milnor ve Edward Witten'ın kuramın köklerine doğrudan katkılarıyla türevli topolojide standart bir yönteme dönüşmüştür.

Morse kuramı, türevlenebilir çokkatlıyı, üzerine koyduğu gerçel değerli, türevlenebilir bir fonksiyon aracılığıyla inceler. Aşağıda verilen özel koşulları sağlayan bu fonksiyonlara Morse fonksiyonu denmektedir. Bu fonksiyonun çokkatlı üzerindeki kritik noktalarını inceleyerek ve başka hiçbir şeye bakmaksızın, çokkatlının türevli topolojik tüm özellikleri anlaşılır. Örneğin kenarı olmayan ve kompakt bir çokkatlının üzerine konacak bir Morse fonksiyonu, sonlu sayıda kritik noktaya sahip olacaktır. Bu sonlu nokta sayesinde çokkatlıyı sonlu sayıda kulpun bileşimi olarak inşa edebiliriz. Bu inşa, çokkatlının homoloji gruplarına ilişkin önemli bilgiler verir.

Tanımlar

[değiştir | kaynağı değiştir]

M {\displaystyle M} {\displaystyle M}, n {\displaystyle n} {\displaystyle n} boyutlu türevlenebilir bir çokkatlı olsun. Burada (aşağıda ve yukarıda) türevlenebilir derken sürekli türevlenebilirlik kastediliyor. M {\displaystyle M} {\displaystyle M}'den gerçel sayılara bir f {\displaystyle f} {\displaystyle f} fonksiyonu olsun. f {\displaystyle f} {\displaystyle f}'nin yerel koordinatlarda tüm türevlerinin 0 olduğu noktaya f {\displaystyle f} {\displaystyle f}'nin bir kritik noktası denir. Eğer bir kritik noktada f {\displaystyle f} {\displaystyle f}'nin ikinci türevi (Hesse matrisi) tekilse o kritik noktaya dejenere denir. Hiçbir kritik noktası dejenere olmayan bir fonksiyona Morse fonksiyonu denir. Gösterilebilir ki f {\displaystyle f} {\displaystyle f}'nin Morse olup olmaması yerel koordinat seçimlerinden bağımsızdır.

Bir Morse fonksiyonunun bir kritik noktasında Hesse matrisinin negatif özdeğerleri sayısına noktanın damgası (endeksi) denir. Yine, dejenere olmayan bir kritik noktanın damgası, yerel koordinat seçiminden bağımsızdır.

Hesse matrisi gerçel sayılardan oluşmuş n {\displaystyle n} {\displaystyle n}'ye n {\displaystyle n} {\displaystyle n} simetrik bir matris olduğu için özdeğerleri gerçeldir. Dolayısıyla, özdeğerlerin negatif olmasını istemek anlamlıdır. Ayrıca özdeğerlerin ve özvektörlerin sayısı da n {\displaystyle n} {\displaystyle n} tanedir. Dolayısıyla Hesse matrisi köşegenleştirilebilir bir matristir. Yani, kritik noktanın damgası, Hesse matrisinin köşegen halindeki negatif girdi sayısıdır.

Başlıca savlar

[değiştir | kaynağı değiştir]

Aşağıdaki savlar ispatlanabilir:

  • Türevlenebilir her çokkatlının üzerine bir Morse fonksiyonu konabilir. Üstelik, gerçel değerli, türevlenebilir verilmiş herhangi bir fonksiyona istenildiği kadar yakın bir Morse fonksiyonu bulunabilir.
  • Çokkatlı kompaktsa, Morse fonksiyonunun kritik noktaları sonlu tanedir.
  • Morse fonksiyonu istenildiği kadar küçük bir dürtmeyle, kritik noktalara karşılık gelen kritik değerler birbirlerinden farklı yapılabilir.
  • Morse fonksiyonu kendini damgalayan (endeksleyen) biçime dönüştürülebilir; yani fonksiyonun her bir kritik noktasına karşılık gelen değer, kritik noktadaki damgaya (endeks) eşit yapılabilir.

Kaynakça

[değiştir | kaynağı değiştir]
Taslak simgesiGeometri ile ilgili bu madde taslak seviyesindedir. Madde içeriğini genişleterek Vikipedi'ye katkı sağlayabilirsiniz.
"https://tr.wikipedia.org/w/index.php?title=Morse_teorisi&oldid=34472856" sayfasından alınmıştır
Kategoriler:
  • Geometri taslakları
  • Topoloji
  • Düzgün fonksiyonlar
Gizli kategoriler:
  • Kaynakları olmayan maddeler Haziran 2018
  • Tüm taslak maddeler
  • Sayfa en son 20.19, 11 Aralık 2024 tarihinde değiştirildi.
  • Metin Creative Commons Atıf-AynıLisanslaPaylaş Lisansı altındadır ve ek koşullar uygulanabilir. Bu siteyi kullanarak Kullanım Şartlarını ve Gizlilik Politikasını kabul etmiş olursunuz.
    Vikipedi® (ve Wikipedia®) kâr amacı gütmeyen kuruluş olan Wikimedia Foundation, Inc. tescilli markasıdır.
  • Gizlilik politikası
  • Vikipedi hakkında
  • Sorumluluk reddi
  • Davranış Kuralları
  • Geliştiriciler
  • İstatistikler
  • Çerez politikası
  • Mobil görünüm
  • Wikimedia Foundation
  • Powered by MediaWiki
Morse teorisi
Konu ekle