Ortalama ayrıklık - Vikipedi
İçeriğe atla
Ana menü
Gezinti
  • Anasayfa
  • Hakkımızda
  • İçindekiler
  • Rastgele madde
  • Seçkin içerik
  • Yakınımdakiler
Katılım
  • Deneme tahtası
  • Köy çeşmesi
  • Son değişiklikler
  • Dosya yükle
  • Topluluk portalı
  • Wikimedia dükkânı
  • Yardım
  • Özel sayfalar
Vikipedi Özgür Ansiklopedi
Ara
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç

İçindekiler

  • Giriş
  • 1 Tanımı
  • 2 Formüller
  • 3 Ayrıca bakınız
  • 4 Kaynakça
  • 5 Dış bağlantılar

Ortalama ayrıklık

  • العربية
  • Asturianu
  • Български
  • Català
  • Čeština
  • Ελληνικά
  • English
  • Esperanto
  • Español
  • Euskara
  • فارسی
  • Suomi
  • Français
  • हिन्दी
  • Hrvatski
  • Հայերեն
  • Bahasa Indonesia
  • İtaliano
  • 日本語
  • 한국어
  • Latina
  • Македонски
  • Bahasa Melayu
  • Norsk nynorsk
  • Norsk bokmål
  • Polski
  • Português
  • Română
  • Русский
  • Simple English
  • Slovenčina
  • Slovenščina
  • Српски / srpski
  • Sunda
  • Svenska
  • ไทย
  • Українська
  • Tiếng Việt
  • 中文
Bağlantıları değiştir
  • Madde
  • Tartışma
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Araçlar
Eylemler
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Genel
  • Sayfaya bağlantılar
  • İlgili değişiklikler
  • Kalıcı bağlantı
  • Sayfa bilgisi
  • Bu sayfayı kaynak göster
  • Kısaltılmış URL'yi al
  • Karekodu indir
Yazdır/dışa aktar
  • Bir kitap oluştur
  • PDF olarak indir
  • Basılmaya uygun görünüm
Diğer projelerde
  • Vikiveri ögesi
Görünüm
Vikipedi, özgür ansiklopedi
(Ortalama anomali sayfasından yönlendirildi)
Birim zamanda süpürülen alan  eliptik bir yörüngedeki bir nesne tarafından ve  dairesel bir yörüngede (aynı yörünge periyoduna sahip) hayali bir nesne tarafından. Her ikisi de eşit zamanlarda eşit alanları süpürür, ancak açısal tarama hızı eliptik yörünge için değişir ve dairesel yörünge için sabittir. Gösterilenler, iki zaman birimi için ortalama ayrıklık ve gerçek ayrıklıktır. (Görsel basitlik için, örtüşmeyen dairesel bir yörüngenin şematize edildiğine dikkat edin, bu nedenle, aynı yörünge periyoduna sahip bu dairesel yörünge, bu eliptik yörünge ile gerçek ölçekte gösterilmez: ölçeğin eşit periyotlu iki yörünge için doğru olması için, bu yörüngeler kesişmelidir. )
Yörünge mekaniği
Angular parameters of an elliptical orbit
Yörünge mekaniği
Yörünge öğeleri
  • Apsis
  • Enberi açısı
  • Dışmerkezlik
  • Yörünge eğikliği
  • Ortalama ayrıklık
  • Yörünge düğümü
  • Yarı büyük eksen
  • Gerçek anomali
Dışmerkezliğe göre iki cisim problemi
  • Dairesel yörünge
  • Eliptik yörünge
Transfer yörüngesi
  • (Hohmann transfer yörüngesi
  • Bi-elliptic transfer yörüngesi)
  • Parabolik yörünge
  • Hiperbolik yörünge
  • Radyal yörünge
  • Yörünge bozulması
Denklemler
  • Dinamik sürtünme
  • Kurtulma hızı
  • Kepler denklemi
  • Kepler'in gezegensel hareket yasaları
  • Yörünge süresi
  • Yörünge hızı
  • Yüzey kütle çekimi
  • Spesifik yörünge enerjisi
  • Vis-viva denklemi
Gök mekaniği
Yerçekimi etkileri
  • Çift merkezi
  • Hill küresi
  • Tedirginlik
  • Etki alanı
N-cisim yörünge
Lagrange noktası
  • (Halo yörünge)
  • Lissajous yörünge
  • Lyapunov kararlılığı
Mühendislik ve verimlilik
Uçuş öncesi mühendisliği
  • Kütle oranı
  • Yük oranı
  • İtici madde kütle oranı
  • Tsiolkovsky roket denklemi
Verimlilik önlemleri
  • Kütle çekimsel sapan
  • Oberth etkisi
  • g
  • t
  • d

Gök mekaniğinde ortalama ayrıklık (veya anomali), bir eliptik yörünge periyodunun, yörüngedeki cismin periapsis'i geçmesinden bu yana geçen, klasik iki cisim probleminde o cismin konumunun hesaplanmasında kullanılabilecek bir açı olarak ifade edilen kesiridir. Bu, hayali bir cismin, eliptik yörüngesindeki gerçek cisimle aynı yörünge peryodunda, sabit hızla dairesel bir yörüngede hareket etmesi durumunda sahip olacağı çevre merkezden açısal uzaklıktır.[1][2]

Tanımı

[değiştir | kaynağı değiştir]

T belirli bir cismin bir yörüngeyi tamamlaması için gereken süre olarak tanımlayın. T zamanında, yarıçap vektörü 2 π radyan veya 360° süpürür. Ortalama tarama hızı, n, o zaman

n = 2 π T = 360 ∘ T   , {\displaystyle n={\frac {\,2\,\pi \,}{T}}={\frac {\,360^{\circ }\,}{T}}~,} {\displaystyle n={\frac {\,2\,\pi \,}{T}}={\frac {\,360^{\circ }\,}{T}}~,}

Birim zaman başına radyan boyutları veya birim zaman başına derece ile vücudun ortalama açısal hareketi olarak adlandırılır.

τ cismin pericenter'da olduğu zaman olarak tanımlayın. Yukarıdaki tanımlardan, yeni bir miktar M, ortalama ayrıklık tanımlanabilir

M = n ( t − τ )   , {\displaystyle M=n\,(t-\tau )~,} {\displaystyle M=n\,(t-\tau )~,}

bu, keyfi bir t zamanında pericenter'dan radyan veya derece boyutlarıyla açısal bir mesafe verir.[3]

Artış hızı, n, sabit bir ortalama olduğundan, ortalama ayrıklık, her yörünge sırasında 0'dan 2 π radyana veya 0°'den 360°'ye düzgün (doğrusal) olarak artar. Vücut perimerkezdeyken 0'a, apocenter'da π radyan (180°) ve tam bir dönüşten sonra 2 π radyan (360°)'ye eşittir.[4] Ortalama ayrıklık herhangi bir anda biliniyorsa, herhangi bir sonraki (veya önceki) anda n⋅δt eklenerek (veya çıkarılarak) hesaplanabilir, burada δt küçük zaman farkını temsil eder.

Ortalama ayrıklık, herhangi bir fiziksel nesne arasındaki açıyı ölçmez (pericenter veya apocenter veya dairesel bir yörünge hariç). Bir cismin pericenter'dan bu yana yörüngesinin etrafında ne kadar ilerlediğinin basit bir uygun tekdüze ölçüsüdür. Ortalama ayrıklık, bir yörünge boyunca bir konumu tanımlayan üç açısal parametreden (tarihsel olarak "ayrıklıklar" olarak bilinir) biridir, diğer ikisi eksantrik ayrıklık ve gerçek ayrıklıktır.

Formüller

[değiştir | kaynağı değiştir]

Ortalama ayrıklık M, eksantrik ayrıklık E ve eksantriklik e Kepler Denklemi ile hesaplanabilir:

M = E − e sin ⁡ E   . {\displaystyle M=E-e\,\sin E~.} {\displaystyle M=E-e\,\sin E~.}

Ortalama ayrıklık da sıklıkla şu şekilde görülür:

M = M 0 + n ( t − t 0 )   , {\displaystyle M=M_{0}+n\left(t-t_{0}\right)~,} {\displaystyle M=M_{0}+n\left(t-t_{0}\right)~,}

burada M 0 çağdaki ortalama ayrıklıktır ve t 0 çağdır, yörünge elemanlarının atıfta bulunduğu bir referans zamanıdır, bu, pericenter geçiş zamanı olan τ ile çakışabilir veya çakışmayabilir. Bir dizi yörünge elemanından eliptik bir yörüngedeki bir nesnenin konumunu bulmanın klasik yöntemi, bu denklemle ortalama ayrıklığı hesaplamak ve ardından eksantrik ayrıklık için Kepler denklemini çözmektir.

ϖ'yi ϖ boylamı, pericenter'ın bir referans yönünden açısal mesafesi olarak tanımlayın. ℓ ortalama boylam olarak tanımlayın, cismin ortalama ayrıklıkta olduğu gibi düzgün açısal hareketle hareket ettiğini varsayarak, cismin aynı referans yönünden açısal mesafesi. Böylece ortalama ayrıklık da:[5]

M = ℓ − ϖ   . {\displaystyle M=\ell -\varpi ~.} {\displaystyle M=\ell -\varpi ~.}

Ortalama açısal hareket de ifade edilebilir,

n = μ a 3   , {\displaystyle n={\sqrt {{\frac {\mu }{\;a^{3}\,}}\,}}~,} {\displaystyle n={\sqrt {{\frac {\mu }{\;a^{3}\,}}\,}}~,}

burada μ, nesnelerin kütlelerine göre değişen bir yerçekimi parametresidir ve a, yörüngenin yarı ana eksenidir. Ortalama ayrıklık daha sonra genişletilebilir,

M = μ a 3 ( t − τ )   , {\displaystyle M={\sqrt {{\frac {\mu }{\;a^{3}\,}}\,}}\,\left(t-\tau \right)~,} {\displaystyle M={\sqrt {{\frac {\mu }{\;a^{3}\,}}\,}}\,\left(t-\tau \right)~,}

ve burada ortalama ayrıklık, a yarıçaplı a daire üzerinde düzgün açısal hareketi temsil eder. .[6]

Ortalama ayrıklık, eksantrik ayrıklığı bulunarak ve ardından Kepler denklemi kullanılarak eksantriklik ve gerçek ayrıklık f hesaplanabilir. Bu, radyan cinsinden şunu verir:

M = atan2 ⁡ ( −   1 − e 2 sin ⁡ f , −   e − cos ⁡ f ) + π − e 1 − e 2 sin ⁡ f 1 + e cos ⁡ f {\displaystyle M=\operatorname {atan2} \left(-\ {\sqrt {1-e^{2}}}\sin f,-\ e-\cos f\right)+\pi -e{\frac {{\sqrt {1-e^{2}}}\sin f}{1+e\cos f}}} {\displaystyle M=\operatorname {atan2} \left(-\ {\sqrt {1-e^{2}}}\sin f,-\ e-\cos f\right)+\pi -e{\frac {{\sqrt {1-e^{2}}}\sin f}{1+e\cos f}}}

atan2 (y, x), (0, 0) ila (x, y), y ile aynı işarete sahip. (Argümanların genellikle elektronik tablolarda tersine çevrildiğini unutmayın, örneğin Excel.)

Parabolik ve hiperbolik yörüngeler için ortalama ayrıklığı tanımlanmamıştır, çünkü bunların bir periyodu yoktur. Ancak bu durumlarda, eliptik yörüngelerde olduğu gibi, çekici ile yörüngeyi takip eden nesne arasındaki bir kiriş tarafından süpürülen alan zamanla doğrusal olarak artar. Hiperbolik durum için, Kepler yörüngesi makalesinde açıklandığı gibi, geçen süreyi açının bir fonksiyonu olarak (eliptik durumda gerçek ayrıklık) veren yukarıdakine benzer bir formül vardır. Parabolik durum için farklı bir formül vardır, odaklar arasındaki mesafe sonsuza giderken eliptik veya hiperbolik durum için sınırlayıcı durum - bkz. Baker denklemi.

Ortalama ayrıklığı bir seri açılım olarak da ifade edilebilir:[7]

M = f + 2 ∑ n = 1 ∞ ( − 1 ) n { 1 n + 1 − e 2 } β n sin ⁡ n f {\displaystyle M=f+2\sum _{n=1}^{\infty }(-1)^{n}{\Big \{}{\frac {1}{n}}+{\sqrt {1-e^{2}}}{\Big \}}\beta ^{n}\sin {nf}} {\displaystyle M=f+2\sum _{n=1}^{\infty }(-1)^{n}{\Big \{}{\frac {1}{n}}+{\sqrt {1-e^{2}}}{\Big \}}\beta ^{n}\sin {nf}}
ile birlikte β = 1 − 1 − e 2 e {\displaystyle \beta ={\frac {1-{\sqrt {1-e^{2}}}}{e}}} {\displaystyle \beta ={\frac {1-{\sqrt {1-e^{2}}}}{e}}}
M = f − 2 e sin ⁡ f + ( 3 4 e 2 + 1 8 e 4 ) sin ⁡ 2 f − 1 3 e 3 sin ⁡ 3 f + 5 32 e 4 sin ⁡ 4 f + O ⁡ ( e 5 ) {\displaystyle M=f-2\,e\sin f+\left({\frac {3}{4}}e^{2}+{\frac {1}{8}}e^{4}\right)\sin 2f-{\frac {1}{3}}e^{3}\sin 3f+{\frac {5}{32}}e^{4}\sin 4f+\operatorname {\mathcal {O}} \left(e^{5}\right)} {\displaystyle M=f-2\,e\sin f+\left({\frac {3}{4}}e^{2}+{\frac {1}{8}}e^{4}\right)\sin 2f-{\frac {1}{3}}e^{3}\sin 3f+{\frac {5}{32}}e^{4}\sin 4f+\operatorname {\mathcal {O}} \left(e^{5}\right)}

Benzer bir formül, gerçek ayrıklığı doğrudan ortalama ayrıklığı cinsinden verir:[8]

f = M + ( 2 e − 1 4 e 3 ) sin ⁡ M + 5 4 e 2 sin ⁡ 2 M + 13 12 e 3 sin ⁡ 3 M + O ⁡ ( e 4 ) {\displaystyle f=M+\left(2\,e-{\frac {1}{4}}e^{3}\right)\sin M+{\frac {5}{4}}e^{2}\sin 2M+{\frac {13}{12}}e^{3}\sin 3M+\operatorname {\mathcal {O}} \left(e^{4}\right)} {\displaystyle f=M+\left(2\,e-{\frac {1}{4}}e^{3}\right)\sin M+{\frac {5}{4}}e^{2}\sin 2M+{\frac {13}{12}}e^{3}\sin 3M+\operatorname {\mathcal {O}} \left(e^{4}\right)}

Yukarıdaki denklemin genel bir formülasyonu, merkezin denklemi olarak yazılabilir:[9]

f = M + 2 ∑ s = 1 ∞ 1 s { J s ( s e ) + ∑ p = 1 ∞ β p ( J s − p ( s e ) + J s + p ( s e ) ) } sin ⁡ ( s M ) {\displaystyle f=M+2\sum _{s=1}^{\infty }{\frac {1}{s}}{\Big \{}J_{s}(se)+\sum _{p=1}^{\infty }\beta ^{p}{\big (}J_{s-p}(se)+J_{s+p}(se){\big )}{\Big \}}\sin(sM)} {\displaystyle f=M+2\sum _{s=1}^{\infty }{\frac {1}{s}}{\Big \{}J_{s}(se)+\sum _{p=1}^{\infty }\beta ^{p}{\big (}J_{s-p}(se)+J_{s+p}(se){\big )}{\Big \}}\sin(sM)}

Ayrıca bakınız

[değiştir | kaynağı değiştir]
  • Kepler'in gezegensel hareket yasaları
  • Yörünge ögeleri

Kaynakça

[değiştir | kaynağı değiştir]
  1. ^ Montenbruck, Oliver (1989). Practical Ephemeris Calculations. Springer-Verlag. s. 44. ISBN 0-387-50704-3. 
  2. ^ Meeus, Jean (1991). Astronomical Algorithms. Willmann-Bell, Inc., Richmond, VA. s. 182. ISBN 0-943396-35-2. 
  3. ^ Smart, W. M. (1977). Textbook on Spherical Astronomy (sixth bas.). Cambridge University Press, Cambridge. s. 113. ISBN 0-521-29180-1. 
  4. ^ Meeus (1991), p. 183
  5. ^ Smart (1977), p. 122
  6. ^ Vallado, David A. (2001). Fundamentals of Astrodynamics and Applications (2. bas.). El Segundo, CA: Microcosm Press. ss. 53-54. ISBN 1-881883-12-4. 
  7. ^ Smart, W. M. (1953). Celestial Mechanics. London, UK: Longmans, Green, and Co. s. 38. 
  8. ^ Roy, A.E. (1988). Orbital Motion (1. bas.). Bristol, UK; Philadelphia, PA: A. Hilger. ISBN 0852743602. 
  9. ^ Brouwer, Dirk (1961). Methods of celestial mechanics. Elsevier. ss. e.g. 77. 

Dış bağlantılar

[değiştir | kaynağı değiştir]
  • Glossary entry anomaly, mean 19 Ağustos 2017 tarihinde Wayback Machine sitesinde arşivlendi. at the US Naval Observatory's Astronomical Almanac Online 20 Nisan 2015 tarihinde Wayback Machine sitesinde arşivlendi.
  • g
  • t
  • d
Kütleçekimsel yörüngeler
Tipler
Genel
  • At nalı
  • Dairesel
  • Doğrusal / Ters yön
  • Eğik / Eğik olmayan
  • Eliptik / Yüksek eliptik
  • Eş zamanlı
    • yarı
    • alt
  • Hiperbolik yörünge
  • Kaçış
  • Kepler
  • Kutu
  • Lagrange noktası
  • Yakalama
  • Parabolik yörünge
  • Park etme
  • Salınım
  • Transfer yörüngesi
Yer merkezli
  • Alçak Dünya
  • Atmosfer ötesi yörünge
  • Ay'ın yörüngesi
  • Güneş eşzamanlı
  • Kutupsal
  • Mezarlık
  • Molniya
  • Orta Dünya
  • Tundra
  • Yakın-ekvatoral
  • Yer eş zamanlı
    • Jeostatik
    • Yer durağan aktarım
  • Yüksek Dünya
Diğer noktalar
  • Mars
    • Mars merkezli
    • Mars eşzamanlı
    • Mars sabit
  • Lagrange noktaları
    • Uzak ters yön
    • Halo
    • Lissajous
  • Ay merkezli
  • Güneş
    • Güneş merkezli
      • Dünya'nın yörüngesi
    • Mars yaklaşım yörüngesi
    • Güneş zamanlı
  • Diğer
    • Ay yaklaşım yörüngesi
Parametreler
  • Biçim
  • Boyut
  • e  Eksantriklik
  • a  Yarı büyük eksen
  • b  Yarı küçük eksen
  • Q, q  Apsis noktaları
Yönelim
  • i  Eğiklik açısı
  • Ω  Çıkış düğümü boylamı
  • ω  Enberi açısı
  • ϖ  Enberi boylamı
Konum
  • M  Ortalama ayrıklık
  • ν, θ, f  Gerçek anomali
  • E  Dış ayrıklık
  • L  Ortalama boylam
  • l  Gerçek boylam
Değişim
  • T  Yörünge periyodu
  • n  Ortalama devinim
  • v  Yörünge hızı
  • t0  Devir
Manevralar
  • Aktarma, kenetlenme ve çıkarma
  • Ay doğrultusuna giriş
  • Bi-eliptik transfer
  • Buluşma
  • Çarpışma önleme (uzay aracı)
  • Delta-v
  • Delta-v hesabı
  • Düşük enerji transferi
  • Fazlama
  • Hohmann transfer
  • Kütle çekimsel sapan
  • Kütleçekim yönlendirmesi
  • Oberth etkisi
  • Roket denklemi
  • Yörünge değiştirme
Yörünge mekaniği
  • Ekvatoral koordinat sistemi
  • Gezegenlerarası Ulaşım Ağı
  • Gök günlüğü
  • Gökyüzü koordinat sistemi
  • Hill küresi
  • İki satırlı öğeler
  • Karakteristik enerji
  • Kepler'in gezegensel hareket yasaları
  • Kurtulma hızı
  • Lagrange noktası
  • n-cisim problemi
  • Tedirginlik
  • Ters ve doğrusal yön hareket
  • Özgül açısal momentum
  • Özgül yörünge enerjisi
  • Yer yörünge izi
  • Yörünge denklemi
  • Yörünge durum vektörleri
  • Liste Yörüngeler listesi
"https://tr.wikipedia.org/w/index.php?title=Ortalama_ayrıklık&oldid=35794549" sayfasından alınmıştır
Gizli kategori:
  • Webarşiv şablonu wayback bağlantıları
  • Sayfa en son 07.24, 9 Ağustos 2025 tarihinde değiştirildi.
  • Metin Creative Commons Atıf-AynıLisanslaPaylaş Lisansı altındadır ve ek koşullar uygulanabilir. Bu siteyi kullanarak Kullanım Şartlarını ve Gizlilik Politikasını kabul etmiş olursunuz.
    Vikipedi® (ve Wikipedia®) kâr amacı gütmeyen kuruluş olan Wikimedia Foundation, Inc. tescilli markasıdır.
  • Gizlilik politikası
  • Vikipedi hakkında
  • Sorumluluk reddi
  • Davranış Kuralları
  • Geliştiriciler
  • İstatistikler
  • Çerez politikası
  • Mobil görünüm
  • Wikimedia Foundation
  • Powered by MediaWiki
Ortalama ayrıklık
Konu ekle