Slutsky teoremi - Vikipedi
İçeriğe atla
Ana menü
Gezinti
  • Anasayfa
  • Hakkımızda
  • İçindekiler
  • Rastgele madde
  • Seçkin içerik
  • Yakınımdakiler
Katılım
  • Deneme tahtası
  • Köy çeşmesi
  • Son değişiklikler
  • Dosya yükle
  • Topluluk portalı
  • Wikimedia dükkânı
  • Yardım
  • Özel sayfalar
Vikipedi Özgür Ansiklopedi
Ara
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç

İçindekiler

  • Giriş
  • 1 Açıklama
  • 2 Kanıt
  • 3 Kaynakça

Slutsky teoremi

  • Deutsch
  • English
  • Español
  • Suomi
  • Français
  • עברית
  • İtaliano
  • Polski
  • Русский
  • Українська
  • 中文
Bağlantıları değiştir
  • Madde
  • Tartışma
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Araçlar
Eylemler
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Genel
  • Sayfaya bağlantılar
  • İlgili değişiklikler
  • Kalıcı bağlantı
  • Sayfa bilgisi
  • Bu sayfayı kaynak göster
  • Kısaltılmış URL'yi al
  • Karekodu indir
Yazdır/dışa aktar
  • Bir kitap oluştur
  • PDF olarak indir
  • Basılmaya uygun görünüm
Diğer projelerde
  • Vikiveri ögesi
Görünüm
Vikipedi, özgür ansiklopedi

Olasılık teorisinde Slutsky teoremi,[1] reel sayıların yakınsak dizileri için olan cebirsel işlemlerin bazı özelliklerini rassal değişkenler dizileri için genişletir. Teorem bu adı Eugen Slutsky'den sonra almıştır.[2]

Açıklama

[değiştir | kaynağı değiştir]

{Xn} ve {Yn} rassal değişkenler skaları/vektörü/matrisi dizileri olsun. Eğer Xn dağılımda rassal bir eleman olan X'e ve Yn olasılıkta c gibi bir sabite yakınsıyorsa,

  • X n + Y n   → d   X + c ; {\displaystyle X_{n}+Y_{n}\ {\xrightarrow {d}}\ X+c;} {\displaystyle X_{n}+Y_{n}\ \xrightarrow {d} \ X+c;}
  • Y n X n   → d   c X ; {\displaystyle Y_{n}X_{n}\ {\xrightarrow {d}}\ cX;} {\displaystyle Y_{n}X_{n}\ \xrightarrow {d} \ cX;}
  • Y n − 1 X n   → d   c − 1 X , {\displaystyle Y_{n}^{-1}X_{n}\ {\xrightarrow {d}}\ c^{-1}X,} {\displaystyle Y_{n}^{-1}X_{n}\ \xrightarrow {d} \ c^{-1}X,}   c'nin tersinin alınabilir olduğu veri iken,

( → d {\displaystyle {\xrightarrow {d}}} {\displaystyle \xrightarrow {d} } dağılımda yakınsamayı ifade etmektedir.)

Notlar:

  1. Teoremin açıklamsında, “Yn olasılıkta bir sabit olan cye yakınsar” ifadesi “Yn dağılımda bir sabit olan cye yakınsar” ile değiştirilebilir — bu iki gereklilik rassal değişkenlerin yakınsaması özelliğine göre eştir.
  2. Yn sabit bir sayıya yakınsar gerekliliği önemlidir — eğer dejenere olmaya rassal bir değişkene yakınsayacak olursa teorem geçerliliğini yitirir.
  3. Tüm dağılımda yakınsama ifadelerini rassal değişkenlerin yakınsaması özelliğine dayanarak olasılıkta yakınsama ifadesi ile değiştirirsek teorem geçerliliğini devam ettirir.

Kanıt

[değiştir | kaynağı değiştir]

Teorem Xn dağılımda Xe yakınsar ve Yn olasılıkta bir sabit olan cye yakınsar, bu nedenle ortak vektör (Xn, Yn) dağılımda (X, c)'ye yakınsar olgusundan hareket eder.

g(x,y)=x+y, g(x,y)=xy ve g(x,y)=x−1ynin sürekli olduğu düşünülerek (son fonksiyonun sürekli olabilmesi için xin tersinin alınabilir olması gereklidir) sürekli eşleştirme teoremi uygulanır.

Kaynakça

[değiştir | kaynağı değiştir]
  1. ^ Grimmett 2001, Exercise 7.2.5
  2. ^ Slutsky 1925
  • Grimmett, G. (2001). Probability and Random Processes. 3rd. Oxford. 
  • Slutsky, E. (1925). "Über stochastische Asymptoten und Grenzwerte". Metron (Almanca). 5 (3). ss. 3-89. Şablon:JFM. 
"https://tr.wikipedia.org/w/index.php?title=Slutsky_teoremi&oldid=32851424" sayfasından alınmıştır
Kategoriler:
  • Olasılık teoremleri
  • İstatistik teoremleri
  • Sayfa en son 10.53, 21 Mayıs 2024 tarihinde değiştirildi.
  • Metin Creative Commons Atıf-AynıLisanslaPaylaş Lisansı altındadır ve ek koşullar uygulanabilir. Bu siteyi kullanarak Kullanım Şartlarını ve Gizlilik Politikasını kabul etmiş olursunuz.
    Vikipedi® (ve Wikipedia®) kâr amacı gütmeyen kuruluş olan Wikimedia Foundation, Inc. tescilli markasıdır.
  • Gizlilik politikası
  • Vikipedi hakkında
  • Sorumluluk reddi
  • Davranış Kuralları
  • Geliştiriciler
  • İstatistikler
  • Çerez politikası
  • Mobil görünüm
  • Wikimedia Foundation
  • Powered by MediaWiki
Slutsky teoremi
Konu ekle