Sonlu cisim - Vikipedi
İçeriğe atla
Ana menü
Gezinti
  • Anasayfa
  • Hakkımızda
  • İçindekiler
  • Rastgele madde
  • Seçkin içerik
  • Yakınımdakiler
Katılım
  • Deneme tahtası
  • Köy çeşmesi
  • Son değişiklikler
  • Dosya yükle
  • Topluluk portalı
  • Wikimedia dükkânı
  • Yardım
  • Özel sayfalar
Vikipedi Özgür Ansiklopedi
Ara
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç

İçindekiler

  • Giriş
  • 1 Bazı küçük sonlu cisimler
    • 1.1 F2
    • 1.2 F3
    • 1.3 F4
    • 1.4 F8
    • 1.5 F9
    • 1.6 F16
    • 1.7 F25
  • 2 Ayrıca bakınız

Sonlu cisim

  • العربية
  • Беларуская
  • Български
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • English
  • Español
  • Euskara
  • فارسی
  • Suomi
  • Français
  • Galego
  • עברית
  • Հայերեն
  • Bahasa Indonesia
  • İtaliano
  • 日本語
  • 한국어
  • Lombard
  • Nederlands
  • Norsk bokmål
  • Polski
  • Português
  • Română
  • Русский
  • Simple English
  • Српски / srpski
  • Svenska
  • Українська
  • اردو
  • Tiếng Việt
  • 中文
  • 粵語
Bağlantıları değiştir
  • Madde
  • Tartışma
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Araçlar
Eylemler
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Genel
  • Sayfaya bağlantılar
  • İlgili değişiklikler
  • Kalıcı bağlantı
  • Sayfa bilgisi
  • Bu sayfayı kaynak göster
  • Kısaltılmış URL'yi al
  • Karekodu indir
Yazdır/dışa aktar
  • Bir kitap oluştur
  • PDF olarak indir
  • Basılmaya uygun görünüm
Diğer projelerde
  • Wikimedia Commons
  • Vikiveri ögesi
Görünüm
Vikipedi, özgür ansiklopedi

Cebirde sonlu cisim veya Galois cismi (Évariste Galois'e ithaf edilsin diye bu adla adlandırıldı), sonlu sayıda elemandan oluşan bir cisimdir. Herhangi bir cisim olarak düşünülürse sonlu cisim, değişme, çarpma, toplama, çıkarma ve (sıfırdan farklı) bölme işlemlerinin tanımlandığı bir kümedir. Sonlu cisimlere yaygın örnek, ℤ/3ℤ veya ℤ/7ℤ gibi tam sayı olan asal tam sayılar modülü verilebilir.

Sonlu cisimler yalnızca, (p bir asal sayı ve k pozitif tam sayı olan) pk asal kuvveti için geçerlidir. Her bir asal kuvvet için bu boyuta sahip tek sonlu cisim vardır. Bu boyuttaki tüm cisimler izomorftur. pk boyutuna sahip bir cismin karakteristiği p dir. Bu, sonuç sıfır olana kadar her elemanın kopyalanarak pye eklenmesi anlamına gelir. Örneğin; ℤ/2ℤ (tam sayı mod 2), 1 + 1 = 0 olduğunda karakteristiği 2 olur. ℤ/5ℤ, 0 = 1 + 1 + 1 + 1 + 1 = 2 + 2 + 2 + 2 + 2 = vb. olduğunda karakteristiği 5 olur.

q kuvvetine sahip bir sonlu cisimde Xq − X polinomunun tüm ögeleri, onun kökleri olur. Böylece q farklı doğrusal faktörleri elde edilir.

Sonlu cisimlere, sayılar teorisi, cebirsel geometri, Galois teorisi, sonlu geometri, kriptografi ve kodlama kuramı da dahil matematik ve bilgisayar biliminde çok sık rastlanır.

Bazı küçük sonlu cisimler

[değiştir | kaynağı değiştir]

F2

[değiştir | kaynağı değiştir]
+ 0 1
0 0 1
1 1 0
× 0 1
0 0 0
1 0 1

F3

[değiştir | kaynağı değiştir]
+ 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1
× 0 1 2
0 0 0 0
1 0 1 2
2 0 2 1

F4

[değiştir | kaynağı değiştir]
+ 0 1 α α+1
0 0 1 α α+1
1 1 0 α+1 α
α α α+1 0 1
α+1 α+1 α 1 0
× 0 1 α α+1
0 0 0 0 0
1 0 1 α α+1
α 0 α α+1 1
α+1 0 α+1 1 α

F8

[değiştir | kaynağı değiştir]
Matris tam sayıları modül 2'yi ifade eden sekiz ögeli cisim

  öge (0)         öge (1)         öge (2)         öge (3)

  0  0  0         1  0  0         0  1  0         0  0  1
  0  0  0         0  1  0         0  0  1         1  1  0
  0  0  0         0  0  1         1  1  0         0  1  1

  öge (4)         öge (5)         öge (6)         öge (7)

  1  1  0         0  1  1         1  1  1         1  0  1
  0  1  1         1  1  1         1  0  1         1  0  0
  1  1  1         1  0  1         1  0  0         0  1  0

+/  (0) (1) (2) (3) (4) (5) (6) (7)
(0)  0   1   2   3   4   5   6   7
(1)  1   0   4   7   2   6   5   3
(2)  2   4   0   5   1   3   7   6
(3)  3   7   5   0   6   2   4   1
(4)  4   2   1   6   0   7   3   5
(5)  5   6   3   2   7   0   1   4
(6)  6   5   7   4   3   1   0   2
(7)  7   3   6   1   5   4   2   0

x/  (0) (1) (2) (3) (4) (5) (6) (7)
(0)  0   0   0   0   0   0   0   0
(1)  0   1   2   3   4   5   6   7
(2)  0   2   3   4   5   6   7   1
(3)  0   3   4   5   6   7   1   2
(4)  0   4   5   6   7   1   2   3
(5)  0   5   6   7   1   2   3   4
(6)  0   6   7   1   2   3   4   5
(7)  0   7   1   2   3   4   5   6

F9

[değiştir | kaynağı değiştir]
Matris tam sayıları modül 3'ü ifade eden 9 ögeli cisim

 öge (0)         öge (1)        öge (2)

  0  0            1  0            0  1
  0  0            0  1            1  1

 öge (3)         öge (4)        öge (5)

  1  1            1  2            2  0
  1  2            2  0            0  2

 öge (6)         öge (7)        öge (8)

  0  2            2  2            2  1
  2  2            2  1            1  0

+/  (0) (1) (2) (3) (4) (5) (6) (7) (8)
(0)  0   1   2   3   4   5   6   7   8
(1)  1   5   3   8   7   0   4   6   2
(2)  2   3   6   4   1   8   0   5   7
(3)  3   8   4   7   5   2   1   0   6
(4)  4   7   1   5   8   6   3   2   0
(5)  5   0   8   2   6   1   7   4   3
(6)  6   4   0   1   3   7   2   8   5
(7)  7   6   5   0   2   4   8   3   1
(8)  8   2   7   6   0   3   5   1   4

x/  (0) (1) (2) (3) (4) (5) (6) (7) (8)
(0)  0   0   0   0   0   0   0   0   0
(1)  0   1   2   3   4   5   6   7   8
(2)  0   2   3   4   5   6   7   8   1
(3)  0   3   4   5   6   7   8   1   2
(4)  0   4   5   6   7   8   1   2   3
(5)  0   5   6   7   8   1   2   3   4
(6)  0   6   7   8   1   2   3   4   5
(7)  0   7   8   1   2   3   4   5   6
(8)  0   8   1   2   3   4   5   6   7

F16

[değiştir | kaynağı değiştir]

F16, a + b x + c x2 + d x3 polinomu ile ifade edilir.
a, b, c ve d tam sayı modül 2 dir.
Polinomlar, x4 = 1 + x kuralı kullanılarak x kuvvetleri ile elde edilir.

. 

ö ( 0)        ö ( 1)        ö ( 2)        ö ( 3)
[ 0  0  0  0] [ 1  0  0  0] [ 0  1  0  0] [ 0  0  1  0]

ö ( 4)        ö ( 5)        ö ( 6)        ö ( 7)
[ 0  0  0  1] [ 1  1  0  0] [ 0  1  1  0] [ 0  0  1  1]

ö ( 8)        ö ( 9)        ö (10)        ö (11)
[ 1  1  0  1] [ 1  0  1  0] [ 0  1  0  1] [ 1  1  1  0]

ö (12)        ö (13)        ö (14)        ö (15)
[ 0  1  1  1] [ 1  1  1  1] [ 1  0  1  1] [ 1  0  0  1]

+/   0_ 1_ 2_ 3_ 4_ 5_ 6_ 7_ 8_ 9_10_11_12_13_14_15_
 0_  0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15
 1_  1  0  5  9 15  2 11 14 10  3  8  6 13 12  7  4
 2_  2  5  0  6 10  1  3 12 15 11  4  9  7 14 13  8
 3_  3  9  6  0  7 11  2  4 13  1 12  5 10  8 15 14
 4_  4 15 10  7  0  8 12  3  5 14  2 13  6 11  9  1
 5_  5  2  1 11  8  0  9 13  4  6 15  3 14  7 12 10
 6_  6 11  3  2 12  9  0 10 14  5  7  1  4 15  8 13
 7_  7 14 12  4  3 13 10  0 11 15  6  8  2  5  1  9
 8_  8 10 15 13  5  4 14 11  0 12  1  7  9  3  6  2
 9_  9  3 11  1 14  6  5 15 12  0 13  2  8 10  4  7
10_ 10  8  4 12  2 15  7  6  1 13  0 14  3  9 11  5
11_ 11  6  9  5 13  3  1  8  7  2 14  0 15  4 10 12
12_ 12 13  7 10  6 14  4  2  9  8  3 15  0  1  5 11
13_ 13 12 14  8 11  7 15  5  3 10  9  4  1  0  2  6
14_ 14  7 13 15  9 12  8  1  6  4 11 10  5  2  0  3
15_ 15  4  8 14  1 10 13  9  2  7  5 12 11  6  3  0

x/   0_ 1_ 2_ 3_ 4_ 5_ 6_ 7_ 8_ 9_10_11_12_13_14_15_
 0_  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
 1_  0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15
 2_  0  2  3  4  5  6  7  8  9 10 11 12 13 14 15  1
 3_  0  3  4  5  6  7  8  9 10 11 12 13 14 15  1  2
 4_  0  4  5  6  7  8  9 10 11 12 13 14 15  1  2  3
 5_  0  5  6  7  8  9 10 11 12 13 14 15  1  2  3  4
 6_  0  6  7  8  9 10 11 12 13 14 15  1  2  3  4  5
 7_  0  7  8  9 10 11 12 13 14 15  1  2  3  4  5  6
 8_  0  8  9 10 11 12 13 14 15  1  2  3  4  5  6  7
 9_  0  9 10 11 12 13 14 15  1  2  3  4  5  6  7  8
10_  0 10 11 12 13 14 15  1  2  3  4  5  6  7  8  9
11_  0 11 12 13 14 15  1  2  3  4  5  6  7  8  9 10
12_  0 12 13 14 15  1  2  3  4  5  6  7  8  9 10 11
13_  0 13 14 15  1  2  3  4  5  6  7  8  9 10 11 12
14_  0 14 15  1  2  3  4  5  6  7  8  9 10 11 12 13
15_  0 15  1  2  3  4  5  6  7  8  9 10 11 12 13 14

F25

[değiştir | kaynağı değiştir]

F25, a + b√2 sayıları ile ifade edilir. a ve b, tam sayı modül 5 dir.
2 + √2 kuvvetleri ile elde edilir.

ö (0) ö (1) ö (2) ö (3) ö (4)
0 + 0√2 1 + 0√2 2 + 1√2 1 + 4√2 0 + 4√2
ö (5) ö (6) ö (7) ö (8) ö (9)
3 + 3√2 2 + 4√2 2 + 0√2 4 + 2√2 2 + 3√2
ö (10) ö (11) ö (12) ö (13) ö (14)
0 + 3√2 1 + 1√2 4 + 3√2 4 + 0√2 3 + 4√2
ö (15) ö (16) ö (17) ö (18) ö (19)
4 + 1√2 0 + 1√2 2 + 2√2 3 + 1√2 3 + 0√2
ö (20) ö (21) ö (22) ö (23) ö (24)
1 + 3√2 3 + 2√2 0 + 2√2 4 + 4√2 1 + 2√2
+ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
1 1 7 18 6 3 12 14 19 22 5 20 2 10 0 23 16 11 21 15 13 9 8 24 4 17
2 2 18 8 19 7 4 13 15 20 23 6 21 3 11 0 24 17 12 22 16 14 10 9 1 5
3 3 6 19 9 20 8 5 14 16 21 24 7 22 4 12 0 1 18 13 23 17 15 11 10 2
4 4 3 7 20 10 21 9 6 15 17 22 1 8 23 5 13 0 2 19 14 24 18 16 12 11
5 5 12 4 8 21 11 22 10 7 16 18 23 2 9 24 6 14 0 3 20 15 1 19 17 13
6 6 14 13 5 9 22 12 23 11 8 17 19 24 3 10 1 7 15 0 4 21 16 2 20 18
7 7 19 15 14 6 10 23 13 24 12 9 18 20 1 4 11 2 8 16 0 5 22 17 3 21
8 8 22 20 16 15 7 11 24 14 1 13 10 19 21 2 5 12 3 9 17 0 6 23 18 4
9 9 5 23 21 17 16 8 12 1 15 2 14 11 20 22 3 6 13 4 10 18 0 7 24 19
10 10 20 6 24 22 18 17 9 13 2 16 3 15 12 21 23 4 7 14 5 11 19 0 8 1
11 11 2 21 7 1 23 19 18 10 14 3 17 4 16 13 22 24 5 8 15 6 12 20 0 9
12 12 10 3 22 8 2 24 20 19 11 15 4 18 5 17 14 23 1 6 9 16 7 13 21 0
13 13 0 11 4 23 9 3 1 21 20 12 16 5 19 6 18 15 24 2 7 10 17 8 14 22
14 14 23 0 12 5 24 10 4 2 22 21 13 17 6 20 7 19 16 1 3 8 11 18 9 15
15 15 16 24 0 13 6 1 11 5 3 23 22 14 18 7 21 8 20 17 2 4 9 12 19 10
16 16 11 17 1 0 14 7 2 12 6 4 24 23 15 19 8 22 9 21 18 3 5 10 13 20
17 17 21 12 18 2 0 15 8 3 13 7 5 1 24 16 20 9 23 10 22 19 4 6 11 14
18 18 15 22 13 19 3 0 16 9 4 14 8 6 2 1 17 21 10 24 11 23 20 5 7 12
19 19 13 16 23 14 20 4 0 17 10 5 15 9 7 3 2 18 22 11 1 12 24 21 6 8
20 20 9 14 17 24 15 21 5 0 18 11 6 16 10 8 4 3 19 23 12 2 13 1 22 7
21 21 8 10 15 18 1 16 22 6 0 19 12 7 17 11 9 5 4 20 24 13 3 14 2 23
22 22 24 9 11 16 19 2 17 23 7 0 20 13 8 18 12 10 6 5 21 1 14 4 15 3
23 23 4 1 10 12 17 20 3 18 24 8 0 21 14 9 19 13 11 7 6 22 2 15 5 16
24 24 17 5 2 11 13 18 21 4 19 1 9 0 22 15 10 20 14 12 8 7 23 3 16 6
× 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
2 0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 1
3 0 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 1 2
4 0 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 1 2 3
5 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 1 2 3 4
6 0 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 1 2 3 4 5
7 0 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 1 2 3 4 5 6
8 0 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 1 2 3 4 5 6 7
9 0 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 1 2 3 4 5 6 7 8
10 0 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 1 2 3 4 5 6 7 8 9
11 0 11 12 13 14 15 16 17 18 19 20 21 22 23 24 1 2 3 4 5 6 7 8 9 10
12 0 12 13 14 15 16 17 18 19 20 21 22 23 24 1 2 3 4 5 6 7 8 9 10 11
13 0 13 14 15 16 17 18 19 20 21 22 23 24 1 2 3 4 5 6 7 8 9 10 11 12
14 0 14 15 16 17 18 19 20 21 22 23 24 1 2 3 4 5 6 7 8 9 10 11 12 13
15 0 15 16 17 18 19 20 21 22 23 24 1 2 3 4 5 6 7 8 9 10 11 12 13 14
16 0 16 17 18 19 20 21 22 23 24 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
17 0 17 18 19 20 21 22 23 24 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
18 0 18 19 20 21 22 23 24 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
19 0 19 20 21 22 23 24 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
20 0 20 21 22 23 24 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
21 0 21 22 23 24 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
22 0 22 23 24 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
23 0 23 24 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
24 0 24 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Ayrıca bakınız

[değiştir | kaynağı değiştir]
  • Soyut cebir
  • Sonlu halka
  • Sonlu grup
Otorite kontrolü Bunu Vikiveri'de düzenleyin
  • BNF: cb120618782 (data)
  • LCCN: sh85048351
  • NLI: 987007531228605171
"https://tr.wikipedia.org/w/index.php?title=Sonlu_cisim&oldid=34458058" sayfasından alınmıştır
Kategoriler:
  • Sonlu cisimler
  • Cisim teorisi
Gizli kategoriler:
  • BNF tanımlayıcısı olan Vikipedi maddeleri
  • LCCN tanımlayıcısı olan Vikipedi maddeleri
  • NLI tanımlayıcısı olan Vikipedi maddeleri
  • Sayfa en son 22.39, 7 Aralık 2024 tarihinde değiştirildi.
  • Metin Creative Commons Atıf-AynıLisanslaPaylaş Lisansı altındadır ve ek koşullar uygulanabilir. Bu siteyi kullanarak Kullanım Şartlarını ve Gizlilik Politikasını kabul etmiş olursunuz.
    Vikipedi® (ve Wikipedia®) kâr amacı gütmeyen kuruluş olan Wikimedia Foundation, Inc. tescilli markasıdır.
  • Gizlilik politikası
  • Vikipedi hakkında
  • Sorumluluk reddi
  • Davranış Kuralları
  • Geliştiriciler
  • İstatistikler
  • Çerez politikası
  • Mobil görünüm
  • Wikimedia Foundation
  • Powered by MediaWiki
Sonlu cisim
Konu ekle