Su bilimi - Vikipedi
İçeriğe atla
Ana menü
Gezinti
  • Anasayfa
  • Hakkımızda
  • İçindekiler
  • Rastgele madde
  • Seçkin içerik
  • Yakınımdakiler
Katılım
  • Deneme tahtası
  • Köy çeşmesi
  • Son değişiklikler
  • Dosya yükle
  • Topluluk portalı
  • Wikimedia dükkânı
  • Yardım
  • Özel sayfalar
Vikipedi Özgür Ansiklopedi
Ara
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç

İçindekiler

  • Giriş
  • 1 Metotları
    • 1.1 Ölçümler
    • 1.2 Verilerin işlenmesi
    • 1.3 Matematik modeller kurulması
    • 1.4 Olasılık hesabı ve istatistik metotlarının kullanılması
  • 2 Çevrim
  • 3 Dolaşım ve yeraltı sularının oluşumu
    • 3.1 Hidrolojik dolaşım
  • 4 Ayrıca bakınız
  • 5 Kaynakça

Su bilimi

  • Afrikaans
  • العربية
  • Asturianu
  • Azərbaycanca
  • تۆرکجه
  • Башҡортса
  • Bikol Central
  • Беларуская
  • Български
  • भोजपुरी
  • বাংলা
  • Bosanski
  • Català
  • 閩東語 / Mìng-dĕ̤ng-ngṳ̄
  • کوردی
  • Čeština
  • Чӑвашла
  • Cymraeg
  • Dansk
  • Deutsch
  • Ελληνικά
  • English
  • Esperanto
  • Español
  • Eesti
  • Euskara
  • فارسی
  • Suomi
  • Na Vosa Vakaviti
  • Français
  • Arpetan
  • Gaeilge
  • Galego
  • עברית
  • हिन्दी
  • Hrvatski
  • Magyar
  • Հայերեն
  • İnterlingua
  • Bahasa Indonesia
  • Ido
  • Íslenska
  • İtaliano
  • 日本語
  • Jawa
  • ქართული
  • Қазақша
  • ಕನ್ನಡ
  • 한국어
  • Кыргызча
  • Latina
  • Lëtzebuergesch
  • Limburgs
  • Lietuvių
  • Latviešu
  • Олык марий
  • Minangkabau
  • Македонски
  • മലയാളം
  • Монгол
  • मराठी
  • Bahasa Melayu
  • မြန်မာဘာသာ
  • Nederlands
  • Norsk nynorsk
  • Norsk bokmål
  • Nouormand
  • Occitan
  • Polski
  • پښتو
  • Português
  • Runa Simi
  • Română
  • Русский
  • سنڌي
  • Srpskohrvatski / српскохрватски
  • සිංහල
  • Simple English
  • Slovenčina
  • Slovenščina
  • Shqip
  • Српски / srpski
  • Sunda
  • Svenska
  • தமிழ்
  • Тоҷикӣ
  • ไทย
  • Татарча / tatarça
  • Українська
  • اردو
  • Oʻzbekcha / ўзбекча
  • Vèneto
  • Tiếng Việt
  • Winaray
  • 吴语
  • 中文
  • 粵語
Bağlantıları değiştir
  • Madde
  • Tartışma
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Araçlar
Eylemler
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Genel
  • Sayfaya bağlantılar
  • İlgili değişiklikler
  • Kalıcı bağlantı
  • Sayfa bilgisi
  • Bu sayfayı kaynak göster
  • Kısaltılmış URL'yi al
  • Karekodu indir
Yazdır/dışa aktar
  • Bir kitap oluştur
  • PDF olarak indir
  • Basılmaya uygun görünüm
Diğer projelerde
  • Wikimedia Commons
  • Vikiveri ögesi
Görünüm
Vikipedi, özgür ansiklopedi
(Subilim sayfasından yönlendirildi)
Bu madde önerilmeyen biçimde kaynaklandırılmıştır. Gösterilen kaynaklar kaynak gösterme şablonları kullanılarak dipnot belirtme biçemine uygun olarak düzenlenmelidir. (Bu şablonun nasıl ve ne zaman kaldırılması gerektiğini öğrenin)
Dalga

Su bilimi ya da hidroloji, suların yerküre üzerindeki dağılımını ve mekanik, fiziksel, kimyasal ve biyolojik özelliklerini inceleyen disiplinler arası bir bilimdir.

Yeryüzünde canlıların yaşamını devam ettirmek için suyu kullanmak ve kontrol altına almak istemesi gerektiğinden insanlar tarihin başlangıcından beri su ile ilgilenmişler, suyun her türlü özelliklerini tanımaya, hareketini yöneten kuramları belirlemeye, oluşturabileceği tehlikeleri belirlemeye, önlemeye ve sudan en iyi şekilde yararlanmaya çalışmışlardır. Suyun hareketini inceleyen bilime hidromekanik, bu bilimin teknikteki uygulamasına da hidrolik denir. hidroloji veya su bilimi ise suyun dünyadaki dağılımını ve özelliklerini inceler.

Hidrolojinin en geniş tanımı, 1962 senesinde ABD Bilim ve Teknoloji Federal Konseyi Bilimsel Hidroloji Komisyonu tarafından önerilmiştir ve önerdikleri tanım ise: "Hidroloji, yerküresinde (yani yeryüzünde, yeraltında ve atmosferde) suyun çevrimini, dağılımını, fiziksel ve kimyasal özelliklerini, çevreyle ve canlılarla karşılıklı ilişkilerini inceleyen temel ve uygulamalı bir bilimdir".

Bu tanımıyla hidroloji diğer birçok bilimlerin alanlarına da girmektedir. Disiplinler arası bir niteliği olan hidroloji bilimi matematik, fizik ve kimya gibi bilimlerle çok yakın bir ilişki içindedir. Hidrolojiyle diğer bilimler arasındaki sınırları kesin olarak belirginleştirmek çok güçtür. Ancak atmosferdeki su ile daha çok meteorolojinin, denizlerdeki su ile oşinografinin, yerin derinliklerindeki su ile de hidrojeolojinin uğraştığı söylenebilir.

Metotları

[değiştir | kaynağı değiştir]

Su bilim çalışmalarında genelde şu yöntemler kullanılır:

Ölçümler

[değiştir | kaynağı değiştir]

Bütün hidrolojik çalışmalarda ilk adım gerekli doğal verilerin toplanması için ölçümler yapılmasıdır. Hidrolojik olayları laboratuvarda benzeştirmek bugün için mümkün olmadığından ölçümlerin doğrudan doğruya doğada yapılması gerekmektedir. Bunun için yeteri sıklıkta bir ölçme ağının kurulması, bu ağdaki istasyonların yeterli hassasiyeti olan araçlarla donatılması ve bu ölçeklerin itinalı bir şekilde okunması gerekir. Hidrolojik veriler gerek zamanla gerekse yerden yere çok değiştikleri için ölçmelerin sık noktalarda ve sürekli olarak yapılması gereklidir. Son yıllarda hidrolojik ölçümlerde hassasiyeti arttıran araçlar kullanılmaktadır, bu arada nükleer tekniklerin kullanılması gittikçe yaygınlaşmaktadır.

Verilerin işlenmesi

[değiştir | kaynağı değiştir]

Ölçmeler sonunda elde edilen bilgiler çok sayıda ve dağınıktır. Bu verilerin insan eliyle kaydedilmesi yerine otomatik olarak kartlara, şeritlere geçirilmesi ve veritabanları halinde saklanması uygundur. Bu kayıtları en iyi şekilde yararlanılabilecek hale getirmek gerekir. Bu iş için günümüzde ileri bilgi işlem metotları kullanılmakta, işlemler bilgisayarlarla yapılmaktadır.

Matematik modeller kurulması

[değiştir | kaynağı değiştir]

Bütün hidrolojik verileri ölçerek elde etmek ekonomik olmayacağı gibi birçok hallerde mümkün de olmadığından ölçümlerin bulunmadığı ya da yetersiz olduğu hallerde hidrolojik olayları yöneten kanunların belirlenmesi için bu olayların matematik modellerinin kurulması ve bunların doğruluğunun ölçme sonuçlarıyla karşılaştırılarak kontrol edilmesi gerekir. Fizik kanunları esas alınarak kurulan bu modeller doğadaki hidrolojik sistemlerin soyutlanmış benzerleri olarak düşünülebilir. Bu modellerin kurulmasında sistem analizi metotları önem kazanmaktadır. Hidrolojik modeller insanların doğada yapacakları değişikliklerin sonunda hidrolojik büyüklüklerde oluşacak değişmelerin tahmininde de kullanılır.

Olasılık hesabı ve istatistik metotlarının kullanılması

[değiştir | kaynağı değiştir]

Hidrolojik olaylar değerleri zaman içinde değişen çok sayıda değişkenin etkisi altında meydana geldikleri için önceden kesinlikle belirlenemeyen bir nitelik taşırlar. Örneğin elde bulunan 30 yıllık ölçme sonuçlarını kullanarak bir akarsuda gelecek 100 yıl içinde görülecek en büyük taşkını kesin olarak belirlemek mümkün değildir. Bu bakımdan olasılık teorisi ve istatistiğin hidrolojide kullanılması büyük önem taşır. Ancak bu bilimler yardımıyla 100 yıllık taşkın debisi için tahminler yapmak mümkün olabilir. Bu bilimlerin hidrolojideki önemleri son yıllarda daha iyi anlaşılmış ve hidroloji öğretiminde bu gibi metotlara büyük bir yer verilmeye başlanmıştır. Ancak unutulmaması gereken bir nokta bu metotları gözü kapalı olarak uygulamamak, daima önce hidrolojik olayın fiziksel yönlerini incelemek zorunluluğudur.

Hidrolojik olayların incelemesinde değişkenlerin çokluğu ve aralarındaki ilişkilerin karmaşıklığı yüzünden teorik bir analiz çoğu zaman mümkün olmadığından yaklaşık yöntemler kullanmak gerekir. Bu sebeple birçok problemlerin çözümü için birden fazla yöntem kullanılabileceği görülür. Bunların arasında uygun bir seçim yapmak bilgi ve deneyimi gerektirir. Kullanılacak metot incelenen olayın zaman ölçeğiyle de ilişkilidir.

Çevrim

[değiştir | kaynağı değiştir]

Su doğada çeşitli yerlerde ve çeşitli hallerde bulunmakta ve yer küresinin çeşitli kısımları arasında durmadan dönüp durmaktadır. Yerküresinin iklim sistemi ile yakından ilişkili olan hidrolojik çevrim günlük ve yıllık periyotları olan bir süreçtir.

Atmosfer biriktirme sisteminden yüzeysel biriktirme sistemine düşen yağışın bir kısmı sızma yoluyla zemin nemi biriktirme sistemine, oradan da perkolasyon yoluyla yer altı biriktirme sistemine geçmektedir. Her üç sistemin de buharlaşma ve terleme yoluyla atmosfer ile ilişkileri bulunduğu gibi yüzeysel biriktirme sistemine düşen yağış eklenip buharlaşma kayıpları çıktıktan sonra geriye kalan su akarsularda akış şeklinde denizlere veya göllere ulaşmakta, oradan buharlaşma ile atmosfere geri dönmektedir. Hidrolojik çevrim sırasında su aynı zamanda yer yüzeyinden söktüğü katı taneleri akarsular yoluyla göl ve denizlere taşıyarak yerkabuğunun biçim değiştirmesine sebep olur.

Sistem, düzenli bir şekilde birbirleriyle ilişkili olan ve çevresinden belli bir sınırla ayrılan bileşenler takımı olarak tanımlanır. Sistemi çevresinden ayıran sınırın çizilmesi incelenen problemin özelliklerine bağlıdır. Hidrolojik çalışmalarda göz önüne alınan sistem bir akarsu havzasının bir bölümü olabileceği gibi bir havzanın tümü de olabilir, birkaç havza bir arada bir sistem olarak da düşünülebilir. Bir sistemin çevresiyle olan ilişkileri girdi ve çıktı vektörleriyle belirlenir.

Yerküresinde insanın varlığı hidrolojik çevrimi etkilemektedir. Bu diyagram hidrolojinin mühendislikteki önemini de ortaya koymaktadır. Mühendislik hidrolojisinde yüzeysel akışını aynı çıkış noktasına gönderen bölge olarak tanımlanan su toplama (drenaj) havzasını esas ünite olarak ele almak uygun olur. İnsanın hidrolojik çevrim üzerindeki etkisi yağış safhasında suni yağış şeklinde görülür. Diyagramda bir havzaya düşen yağışın bir kısmının buharlaşma ve terleme ile atmosfere geri döndüğü bir kısmının zemine sızarak yer altı taşıma ve biriktirme sistemine katıldığı, bir kısmının da yüzeysel taşıma ve biriktirme sisteminde yüzeysel akış haline geçtiği görülmektedir. İnsan doğal bitki örtüsünü değiştirerek tutma, terleme ve sızma kayıplarını etkileyebilir. Bunun sonunda yüzeysel akış değişir. Örneğin ormanların kesilmesi sonunda yüzeysel akış hacminin ve taşkınların büyüdüğü görülmüştür. Şehirleşme de sızma kayıplarını azaltacağından yüzeysel akış üzerinde etkili olur, yer altı biriktirme sistemini de etkiler. Bir yandan da kirli artıkların akarsulara dökülmesiyle insan doğada suların kirlenmesine, böylece su kalitesinin düşmesine sebep olmaktadır. Şehirleşmenin ve endüstrinin ilerlemesiyle daha da önem kazanan bu sorun insanın hidrolojik çevrim üzerine etkisinin olumsuz bir yönünü yansıtmaktadır. İnsanlar tarafından meydana getirilen büyük biriktirme hazneleri akarsulardaki akış rejimini değiştirirler, bu hazneler aynı zamanda önemli miktarda buharlaşmaya yol açtığı için haznelerden buharlaşma diyagramda ayrıca gösterilmiştir.

İnsan kendisi için gerekli olan suyu akarsular ve haznelerden su alarak yüzeysel sistemden ve yerçekimi ya da pompajla yer altı sisteminden elde edebilir. Bir havzada mevcut toplam su miktarı hidrolojik çalışmalarla belirlenir. Bu miktarı ihtiyaçla karşılaştırarak suyun en ekonomik şekilde kullanılmasını sağlamak ise su kaynaklarını geliştirme çalışmalarının konusudur.

Dolaşım ve yeraltı sularının oluşumu

[değiştir | kaynağı değiştir]

Hidrolojik dolaşım

[değiştir | kaynağı değiştir]

Yeryüzüne düşen yağış yoluyla oluşan sular, yağış esnasında daha yere ulaşmadan, arazi üzerinden akarken ve bitkiler tarafından alınıp terleme yolu ile dışarı çıkıp buharlaşır. Bu suyun kısa dolaşım yapması ve tekrar atmosfere dönmesi olayıdır.

Aynı şekilde oluşan suların bir kısmı ise yüzeyde akar ve çeşitli akarsuları oluşturur. Diğer bir kısmı da yeraltına sızar; buralarda birikir ve yeraltısularını meydana getirir. Yeraltına sızan bu sular boşlukları ve çatlakları doldurur; bu boşluk ve çatlaklar boyunca derinlere kadar gider; ya da bir noktadan "Kaynak" şeklinde yeryüzüne yeniden çıkar, akarsulara, göllere veya denize boşalır. Bu yüzden su daha uzun yollu Büyük dolaşım yapmış olur. Suyun çeşitli şekillerde yapmış olduğu bu dolaşımlarına "Hidrolojik Dolaşım" adı verilir. Bu devam edegelen döngü, güneş kaynaklı ısı enerjisi ve yerçekimi ile oluşmaktadır.

Ayrıca bakınız

[değiştir | kaynağı değiştir]
  • Hidrometri

Kaynakça

[değiştir | kaynağı değiştir]
  • Temel Britannica Ansiklopedileri
  • Bilim ve Teknik TÜBİTAK
  • g
  • t
  • d
Su
Genel
  • Veri
  • Model
  • Özellikler
Biçimler
  • Döteryumu tükenmiş
  • Yarı ağır
  • Ağır
  • Tritiye
  • Hidronyum
Yeryüzünde
  • Döngü
  • Dağılım
  • Hidrosfer
    • Hidroloji
    • Hidrobiyoloji
  • Kökeni
  • Kirlilik
  • Su şebekesi
  • Kaynaklar
    • yönetimi
    • politikası
  • Tedarik
Fiziksel parametreler
  • Tabakalaşma
    • Okyanus tabakalaşması
    • Göl tabakalaşması
  • Okyanus sıcaklığı
  • Su deposu
  • Su tankı
  • Sarnıç
Ilgili
  • Nehirler, göller, akarsular ve kaynaklar
  • Doğal kaynaklar
  • Akarsu morfolojisi
  • Dünya'nın yeryüzü şekilleri
  • Fiziksel oseonografya
  • Dünya'daki okyanuslar ve denizler
  • Coğrafya dalları
  • Şişelenmiş su
  • Gölet
  • Buz
  • Buzul
  • Kıyı coğrafyası
  • Sıhhi tesisat
  • Kanalizasyon
  • Sulak alan
  • g
  • t
  • d
Yer bilimleri
Atmosfer bilimi  · Buzul bilimi  · Çevre bilimi  · Fiziki coğrafya  · Jeodezi  · Jeofizik  · Jeoloji  · Meteoroloji  · Okyanus bilimi  · Su bilimi  · Toprak bilimi  · Volkanoloji
KategoriKategori · Commons sayfasıMedya
  • g
  • t
  • d
Coğrafyanın genel alanları
Beşeri coğrafya
Davranışsal coğrafya • Kültürel coğrafya • Nüfus • Gelişme • Ekonomik • Feminist • Sağlık • Tarihi • Bölgesel • Kentsel • Eleştirel coğrafya • Siyasi coğrafya • Turizm coğrafyası • Yerleşme coğrafyası
Fiziki coğrafya
Biyocoğrafya • İklim bilimi • Kıyı coğrafyası • Çevre coğrafyası • Jeodezi • Yüzey bilimi • Buzul bilimi • Sular coğrafyası • Manzara ekolojisi • Limnoloji • Okyanus bilimi • Paleocoğrafya • Pedoloji • Kuvaterner bilimi • Bitki coğrafyası
  • g
  • t
  • d
Çevre bilimi
Ana alanlar
  • Atmosfer bilimi
  • Biyojeokimya
  • Ekoloji
  • Çevre kimyası
  • Çevresel toprak bilimi
  • Limnoloji
  • Okyanus bilimi
  • Su bilimi
  • Yer bilimleri
"Mavi Bilye"
İlgili alanlar
  • Biyoloji
  • Çevre çalışmaları
  • Çevre ekonomisi
  • Çevre mühendisliği
  • Çevre sağlığı
    • epidemiyoloji
  • Çevre tasarımı
  • Çevre toksikolojisi
  • Ekolojik ekonomi
  • Fizik
  • Jeodezi
  • Kent ekolojisi
  • Kimya
    • yeşil
  • Sistemler ekolojisi
  • Sürdürülebilirlik bilimi
Uygulamalar
  • Atık su arıtımı
  • Atık yönetimi
  • Islah
  • Kirlilik kontrolü
  • Çevre teknolojisi
  • Doğal kaynak yönetimi
  • Enerji tasarrufu
  • Geri dönüşüm
  • Kent metabolizması
  • Su temizleme
  • Toplu ulaşım teşviği
  • Yenilenebilir enerji
  • Yol ekolojisi
Listeler
  • Unvanlar
  • Yayınlar
  • Araştırma kurumları
Ayrıca bakınız
  • İnsanın çevre üzerindeki etkisi
  • Sürdürülebilirlik
Kategori Kategori (bilim insanları)  · Commons sayfası Medya  · VikiProje Vikiproje
Otorite kontrolü Bunu Vikiveri'de düzenleyin
  • BNF: cb119514247 (data)
  • GND: 4026309-5
  • LCCN: sh85063460
  • NARA: 10640327
  • NDL: 00571569
  • NKC: ph114739
  • NLI: 987007533736605171
"https://tr.wikipedia.org/w/index.php?title=Su_bilimi&oldid=34531097" sayfasından alınmıştır
Kategoriler:
  • Subilim
  • Hidrolik mühendisliği
Gizli kategoriler:
  • Kaynak belirtme şablonları ile düzenlenmesi gereken maddeler
  • BNF tanımlayıcısı olan Vikipedi maddeleri
  • GND tanımlayıcısı olan Vikipedi maddeleri
  • LCCN tanımlayıcısı olan Vikipedi maddeleri
  • NARA tanımlayıcısı olan Vikipedi maddeleri
  • NDL tanımlayıcısı olan Vikipedi maddeleri
  • NKC tanımlayıcısı olan Vikipedi maddeleri
  • NLI tanımlayıcısı olan Vikipedi maddeleri
  • Sayfa en son 19.18, 23 Aralık 2024 tarihinde değiştirildi.
  • Metin Creative Commons Atıf-AynıLisanslaPaylaş Lisansı altındadır ve ek koşullar uygulanabilir. Bu siteyi kullanarak Kullanım Şartlarını ve Gizlilik Politikasını kabul etmiş olursunuz.
    Vikipedi® (ve Wikipedia®) kâr amacı gütmeyen kuruluş olan Wikimedia Foundation, Inc. tescilli markasıdır.
  • Gizlilik politikası
  • Vikipedi hakkında
  • Sorumluluk reddi
  • Davranış Kuralları
  • Geliştiriciler
  • İstatistikler
  • Çerez politikası
  • Mobil görünüm
  • Wikimedia Foundation
  • Powered by MediaWiki
Su bilimi
Konu ekle