Fraktal - Vikipedi
İçeriğe atla
Ana menü
Gezinti
  • Anasayfa
  • Hakkımızda
  • İçindekiler
  • Rastgele madde
  • Seçkin içerik
  • Yakınımdakiler
Katılım
  • Deneme tahtası
  • Köy çeşmesi
  • Son değişiklikler
  • Dosya yükle
  • Topluluk portalı
  • Wikimedia dükkânı
  • Yardım
  • Özel sayfalar
Vikipedi Özgür Ansiklopedi
Ara
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç

İçindekiler

  • Giriş
  • 1 Fraktal Boyut
  • 2 Teorinin gelişimi
  • 3 Kaynakça

Fraktal

  • Afrikaans
  • Alemannisch
  • العربية
  • Asturianu
  • Azərbaycanca
  • Башҡортса
  • Беларуская
  • Български
  • বাংলা
  • Bosanski
  • Català
  • کوردی
  • Čeština
  • Чӑвашла
  • Cymraeg
  • Dansk
  • Deutsch
  • Ελληνικά
  • English
  • Esperanto
  • Español
  • Eesti
  • Euskara
  • فارسی
  • Suomi
  • Na Vosa Vakaviti
  • Français
  • Gaeilge
  • Galego
  • עברית
  • हिन्दी
  • Hrvatski
  • Magyar
  • Հայերեն
  • İnterlingua
  • Bahasa Indonesia
  • Ido
  • Íslenska
  • İtaliano
  • 日本語
  • ქართული
  • Қазақша
  • ಕನ್ನಡ
  • 한국어
  • Latina
  • Лезги
  • Lietuvių
  • Latviešu
  • Malagasy
  • മലയാളം
  • Bahasa Melayu
  • Nederlands
  • Norsk nynorsk
  • Norsk bokmål
  • ਪੰਜਾਬੀ
  • Polski
  • Português
  • Română
  • Русский
  • Саха тыла
  • Sicilianu
  • Srpskohrvatski / српскохрватски
  • Simple English
  • Slovenčina
  • Slovenščina
  • Shqip
  • Српски / srpski
  • Svenska
  • தமிழ்
  • ไทย
  • Татарча / tatarça
  • Українська
  • اردو
  • Oʻzbekcha / ўзбекча
  • Tiếng Việt
  • 吴语
  • 中文
  • 文言
  • 粵語
  • İsiZulu
Bağlantıları değiştir
  • Madde
  • Tartışma
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Araçlar
Eylemler
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Genel
  • Sayfaya bağlantılar
  • İlgili değişiklikler
  • Kalıcı bağlantı
  • Sayfa bilgisi
  • Bu sayfayı kaynak göster
  • Kısaltılmış URL'yi al
  • Karekodu indir
Yazdır/dışa aktar
  • Bir kitap oluştur
  • PDF olarak indir
  • Basılmaya uygun görünüm
Diğer projelerde
  • Wikimedia Commons
  • Vikiveri ögesi
Görünüm
Vikipedi, özgür ansiklopedi
Bu maddedeki bilgilerin doğrulanabilmesi için ek kaynaklar gerekli. Lütfen güvenilir kaynaklar ekleyerek maddenin geliştirilmesine yardımcı olun. Kaynaksız içerik itiraz konusu olabilir ve kaldırılabilir.
Kaynak ara: "Fraktal" – haber · gazete · kitap · akademik · JSTOR
(Mayıs 2022) (Bu şablonun nasıl ve ne zaman kaldırılması gerektiğini öğrenin)
Sierpinski üçgeni; mutlak surette simetrik bir fraktal.
Bir fraktalı giderek yakınlaşarak izleyen bir animasyon. Simetriye dikkat ediniz.
Mandelbrot kümesinin oluşturduğu fraktal.

Fraktal; matematikte, çoğunlukla kendine benzeme veya oransal kırılma özelliği gösteren karmaşık geometrik şekillerin ortak adıdır. Fraktallar, klasik, yani Öklid (Euklides) geometrideki kare, daire, küre gibi basit şekillerden çok farklıdır. Bunlar doğadaki, Öklid'çi geometri aracılığıyla tanımlanamayacak pek çok uzamsal açıdan düzensiz olguyu ve düzensiz biçimi tanımlama yeteneğine sahiptir. Fraktal terimi parçalanmış ya da kırılmış anlamına gelen Latince "fractus" sözcüğünden türetilmiştir. İlk olarak 1975'te Polonya asıllı matematikçi Benoit B. Mandelbrot tarafından ortaya atılan kavram, yalnızca matematik değil fiziksel kimya, fizyoloji ve akışkanlar mekaniği gibi değişik alanlar üzerinde önemli etkiler yaratan yeni bir geometri sisteminin doğmasına yol açmıştır.

Tüm fraktallar kendine benzer ya da en azından tümüyle kendine benzer olmamakla birlikte, çoğu bu özelliği taşır. Kendine benzer bir cisimde cismi oluşturan parçalar ya da bileşenler cismin bütününe benzer. Düzensiz ayrıntılar ya da desenler giderek küçülen ölçeklerde yinelenir ve tümüyle soyut nesnelerde sonsuza değin sürebilir; öyle ki, her parçanın her bir parçası büyütüldüğünde, yine cismin bütününe benzer. Bu fraktal olgusu, kar tanesi ve ağaç kabuğunda kolayca gözlenebilir. Bu tip tüm doğal fraktallar ile matematiksel olarak kendine benzer olan bazıları, stokastik (olasılıksal) yani rastgeledir; bu nedenle ancak istatistiksel olarak ölçeklenirler. Fraktal cisimler, düzensiz biçimli olduklarından ötürü Öklid'çi şekilleri ötelemezler. (Öteleme bakışına sahip bir cisim kendi çevresinde döndürüldüğünde görünümü aynı kalır.)

Fraktal Boyut

[değiştir | kaynağı değiştir]

Fraktalların belirleyici bir özelliği, fraktal boyut olarak adlandırılan matematiksel bir parametrelerinin olmasıdır. Bu parametrenin bütünüyle geçerli ve basit bir tanımı yoktur. Mandelbrot bu parametreyi Haussdorf boyutu ile denk tutmaktadır. Fraktal boyut, Öklid'çi şekillerin topolojik boyutlarına eşit, fraktallar için topolojik boyutlarından büyüktür. Örneğin Cantor kümesinin fraktal boyutu D = log ⁡ 2 / log ⁡ 3 ∼ 0.6309 > 0 {\displaystyle D=\log 2/\log 3\sim 0.6309>0} {\displaystyle D=\log 2/\log 3\sim 0.6309>0}, topolojik boyutu ise D T = 0 {\displaystyle D_{T}=0} {\displaystyle D_{T}=0}'dır.[1]:14-15

Kendisinin tam bir kopyasını daha küçük boyutlarda içeren fraktallar için fraktal boyutu ve kendine benzerlik boyutu değerleri aynıdır. Bir şekil kendisine benzeyen n {\displaystyle n} {\displaystyle n} kadar kopyadan oluşuyor ve her bir kopya özgün şekle göre, uzunluk olarak, 1 / m {\displaystyle 1/m} {\displaystyle 1/m} büyüklüğünde ise, bu şeklin kendine benzeme boyutu log ⁡ n / log ⁡ m {\displaystyle \log n/\log m} {\displaystyle \log n/\log m} ile verilir. Yukarıda örnek olarak verilen Sierpinski üçgeni, kendine benzeyen n = 3 {\displaystyle n=3} {\displaystyle n=3} kopyadan oluşmuş, her bir kopya da özgün şeklin yarısı ( m = 2 {\displaystyle m=2} {\displaystyle m=2}) uzunluğundadır; dolayısıyla Sierpinski üçgenin fraktal boyutu D = log ⁡ 3 / log ⁡ 2 ∼ 1.585 {\displaystyle D=\log 3/\log 2\sim 1.585} {\displaystyle D=\log 3/\log 2\sim 1.585}'tir.

Teorinin gelişimi

[değiştir | kaynağı değiştir]

Benoit Mandelbrot, IBM laboratuvarlarında çalışmaya başladığında Oyun kuramı, iktisat ve emtia fiyatları gibi çeşitli alanlarda çalışan bir mühendisti. Bu çalışmalarını tamamladığında veri iletim hatlarındaki gürültü üzerinde çalışmaya başladı. Mühendisler, veri aktarımı sırasında oluşan gürültü karşısında çaresiz kalmışlardı. Mühendislerin bu soruna bulabildikleri en iyi çare, sinyal gücünü artırmaktan ileri gidememişti; ama sinyal gücünün arttırılması da tam bir çözüm sağlamamıştır. İletim hatlarındaki gürültü doğası gereği gelişigüzel olmasına rağmen kümeler halinde gelmekteydi. İletişim süresi boyunca hatasız periyotlar arasında hatalı periyotlar yer almaktaydı. Hatalı periyotların incelenmesi, hata örüntüsünün sanıldığından daha karmaşık olduğunu ortaya koymuştur. Mandelbrot, bir günlük veri trafiğini birer saatlik periyotlara ayırdı. Daha sonra, hatanın gözlendiği periyotları ele alıp bu periyotlar yirmişer dakikalık parçalara böldü ve yine gördü ki, bu birer saatlik periyotların içinde de yine hatasız bölümler bulunmaktaydı. Mandelbrot, hatalı bölümler daha kısa zaman aralıklarına bölmeye devam etti. Ve sonunda hatasız periyotların halen var olduğunu gösterdi. Bu arada aykırı bir durum Mandelbrot'un dikkatini çekti: hatalı periyotların hatasız periyotlara oranı periyodun uzunluğundan bağımsız olarak neredeyse sabit kalıyordu.

Kaynakça

[değiştir | kaynağı değiştir]
  1. ^ Mandelbrot, Benoit B. (1983) [1977]. Fractal Geometry of Nature (İngilizce) (yenilenmiş ve ekli bas.). New York, ABD: W. H. Freeman and Company. ISBN 978-0-7167-1186-5. 
Otorite kontrolü Bunu Vikiveri'de düzenleyin
  • BNF: cb119730272 (data)
  • LCCN: sh85051147
  • LNB: 000134137
  • NDL: 00576561
  • NKC: ph120342
  • NLI: 987007548246005171
"https://tr.wikipedia.org/w/index.php?title=Fraktal&oldid=34655816" sayfasından alınmıştır
Kategoriler:
  • Dijital sanat
  • Matematiksel yapılar
  • Topoloji
Gizli kategoriler:
  • Ek kaynaklar gereken maddeler Mayıs 2022
  • Ek kaynaklar gereken tüm maddeler
  • BNF tanımlayıcısı olan Vikipedi maddeleri
  • LCCN tanımlayıcısı olan Vikipedi maddeleri
  • LNB tanımlayıcısı olan Vikipedi maddeleri
  • NDL tanımlayıcısı olan Vikipedi maddeleri
  • NKC tanımlayıcısı olan Vikipedi maddeleri
  • NLI tanımlayıcısı olan Vikipedi maddeleri
  • Sayfa en son 10.00, 16 Ocak 2025 tarihinde değiştirildi.
  • Metin Creative Commons Atıf-AynıLisanslaPaylaş Lisansı altındadır ve ek koşullar uygulanabilir. Bu siteyi kullanarak Kullanım Şartlarını ve Gizlilik Politikasını kabul etmiş olursunuz.
    Vikipedi® (ve Wikipedia®) kâr amacı gütmeyen kuruluş olan Wikimedia Foundation, Inc. tescilli markasıdır.
  • Gizlilik politikası
  • Vikipedi hakkında
  • Sorumluluk reddi
  • Davranış Kuralları
  • Geliştiriciler
  • İstatistikler
  • Çerez politikası
  • Mobil görünüm
  • Wikimedia Foundation
  • Powered by MediaWiki
Fraktal
Konu ekle