Grup temsili - Vikipedi
İçeriğe atla
Ana menü
Gezinti
  • Anasayfa
  • Hakkımızda
  • İçindekiler
  • Rastgele madde
  • Seçkin içerik
  • Yakınımdakiler
Katılım
  • Deneme tahtası
  • Köy çeşmesi
  • Son değişiklikler
  • Dosya yükle
  • Topluluk portalı
  • Wikimedia dükkânı
  • Yardım
  • Özel sayfalar
Vikipedi Özgür Ansiklopedi
Ara
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç

İçindekiler

  • Giriş
  • 1 Kaynakça
  • 2 Kaynakça

Grup temsili

  • العربية
  • Asturianu
  • Башҡортса
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • English
  • Esperanto
  • Español
  • Euskara
  • فارسی
  • Suomi
  • Français
  • Galego
  • עברית
  • İtaliano
  • 日本語
  • ქართული
  • 한국어
  • Nederlands
  • Polski
  • Português
  • Română
  • Русский
  • Српски / srpski
  • Українська
  • Tiếng Việt
  • 中文
  • 粵語
Bağlantıları değiştir
  • Madde
  • Tartışma
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Araçlar
Eylemler
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Genel
  • Sayfaya bağlantılar
  • İlgili değişiklikler
  • Kalıcı bağlantı
  • Sayfa bilgisi
  • Bu sayfayı kaynak göster
  • Kısaltılmış URL'yi al
  • Karekodu indir
Yazdır/dışa aktar
  • Bir kitap oluştur
  • PDF olarak indir
  • Basılmaya uygun görünüm
Diğer projelerde
  • Vikiveri ögesi
Görünüm
Vikipedi, özgür ansiklopedi
Bir grup temsili nesne üzerinde "hareket eder". Basit bir örnek, normal bir çokgenin yansımalar ve dönüşlerden oluşan simetrilerinin çokgeni nasıl dönüştürdüğüdür.

Temsil teorisinin matematiksel alanında grup temsilleri, soyut grupları bir vektör uzayının kendisine göre doğrusal dönüşümleri (yani vektör uzayı otomorfizmleri) cinsinden tanımlar. Özellikle grup elemanlarını tersinir matrisler olarak temsil etmek için kullanılabilirler, böylece grup işlemi matris çarpımı ile temsil edilebilir.

Kimyada grup temsili, matematiksel grup öğelerini simetrik dönüşler ve moleküllerin yansımaları ile ilişkilendirir.

Grupların gösterimleri birçok grup-teorik problemin lineer cebirdeki problemlere indirgenmesine izin vermesi nedeniyle önemlidir. Fizikte de örneğin bir fiziksel sistemin simetri grubunun o sistemi tanımlayan denklemlerin çözümlerini nasıl etkilediğini açıklaması nedeniyle önemlidir.

Kaynakça

[değiştir | kaynağı değiştir]

Kaynakça

[değiştir | kaynağı değiştir]
  • Introduction to representation theory with emphasis on Lie groups.
  • Yurii I. Lyubich. Introduction to the Theory of Banach Representations of Groups 19 Haziran 2023 tarihinde Wayback Machine sitesinde arşivlendi.. Translated from the 1985 Russian-language edition (Kharkov, Ukraine). Birkhäuser Verlag. 1988.
Otorite kontrolü Bunu Vikiveri'de düzenleyin
  • BNE: XX5225372
  • BNF: cb11932754t (data)
  • GND: 7503474-8
  • LCCN: sh85112944
  • NLI: 987007531631305171
  • SUDOC: 02724251X
"https://tr.wikipedia.org/w/index.php?title=Grup_temsili&oldid=30410251" sayfasından alınmıştır
Kategoriler:
  • Temsil teorisi
  • Grup teorisi
Gizli kategoriler:
  • Webarşiv şablonu wayback bağlantıları
  • BNE tanımlayıcısı olan Vikipedi maddeleri
  • BNF tanımlayıcısı olan Vikipedi maddeleri
  • GND tanımlayıcısı olan Vikipedi maddeleri
  • LCCN tanımlayıcısı olan Vikipedi maddeleri
  • NLI tanımlayıcısı olan Vikipedi maddeleri
  • SUDOC tanımlayıcısı olan Vikipedi maddeleri
  • Sayfa en son 10.19, 21 Ekim 2023 tarihinde değiştirildi.
  • Metin Creative Commons Atıf-AynıLisanslaPaylaş Lisansı altındadır ve ek koşullar uygulanabilir. Bu siteyi kullanarak Kullanım Şartlarını ve Gizlilik Politikasını kabul etmiş olursunuz.
    Vikipedi® (ve Wikipedia®) kâr amacı gütmeyen kuruluş olan Wikimedia Foundation, Inc. tescilli markasıdır.
  • Gizlilik politikası
  • Vikipedi hakkında
  • Sorumluluk reddi
  • Davranış Kuralları
  • Geliştiriciler
  • İstatistikler
  • Çerez politikası
  • Mobil görünüm
  • Wikimedia Foundation
  • Powered by MediaWiki
Grup temsili
Konu ekle