Taylor serisi - Vikipedi
İçeriğe atla
Ana menü
Gezinti
  • Anasayfa
  • Hakkımızda
  • İçindekiler
  • Rastgele madde
  • Seçkin içerik
  • Yakınımdakiler
Katılım
  • Deneme tahtası
  • Köy çeşmesi
  • Son değişiklikler
  • Dosya yükle
  • Topluluk portalı
  • Wikimedia dükkânı
  • Yardım
  • Özel sayfalar
Vikipedi Özgür Ansiklopedi
Ara
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç

İçindekiler

  • Giriş
  • 1 Tanım
    • 1.1 Maclaurin serisi
  • 2 Örnekler
  • 3 Yakınsaklık
  • 4 Analitik fonksiyonlar
  • 5 Kullanım Alanları
  • 6 Ayrıca bakınız

Taylor serisi

  • العربية
  • Asturianu
  • Azərbaycanca
  • Башҡортса
  • Boarisch
  • Беларуская
  • Български
  • বাংলা
  • Bosanski
  • Català
  • کوردی
  • Čeština
  • Чӑвашла
  • Cymraeg
  • Dansk
  • Deutsch
  • Ελληνικά
  • English
  • Esperanto
  • Español
  • Eesti
  • Euskara
  • فارسی
  • Suomi
  • Français
  • Galego
  • עברית
  • हिन्दी
  • Hrvatski
  • Magyar
  • Հայերեն
  • Bahasa Indonesia
  • Íslenska
  • İtaliano
  • 日本語
  • Қазақша
  • 한국어
  • Lietuvių
  • Latviešu
  • Македонски
  • Bahasa Melayu
  • Nederlands
  • Norsk nynorsk
  • Norsk bokmål
  • Polski
  • Piemontèis
  • Português
  • Română
  • Русский
  • Srpskohrvatski / српскохрватски
  • සිංහල
  • Simple English
  • Slovenčina
  • Slovenščina
  • Shqip
  • Српски / srpski
  • Svenska
  • தமிழ்
  • Тоҷикӣ
  • Татарча / tatarça
  • Українська
  • اردو
  • Tiếng Việt
  • 吴语
  • 中文
  • 粵語
Bağlantıları değiştir
  • Madde
  • Tartışma
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Araçlar
Eylemler
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Genel
  • Sayfaya bağlantılar
  • İlgili değişiklikler
  • Kalıcı bağlantı
  • Sayfa bilgisi
  • Bu sayfayı kaynak göster
  • Kısaltılmış URL'yi al
  • Karekodu indir
Yazdır/dışa aktar
  • Bir kitap oluştur
  • PDF olarak indir
  • Basılmaya uygun görünüm
Diğer projelerde
  • Wikimedia Commons
  • Vikiveri ögesi
Görünüm
Vikipedi, özgür ansiklopedi
(Maclaurin serisi sayfasından yönlendirildi)
Bu madde hiçbir kaynak içermemektedir. Lütfen güvenilir kaynaklar ekleyerek madde içeriğinin geliştirilmesine yardımcı olun. Kaynaksız içerik itiraz konusu olabilir ve kaldırılabilir.
Kaynak ara: "Taylor serisi" – haber · gazete · kitap · akademik · JSTOR
(Haziran 2016) (Bu şablonun nasıl ve ne zaman kaldırılması gerektiğini öğrenin)
Taylor çokterimlisinin derecesi arttıkça, doğru fonksiyona gittikçe yaklaşır. Bu çizim, sin ⁡ x {\displaystyle \sin x} {\displaystyle \sin x} (sinüs fonksiyonunu, siyah ile) ve çeşitli derecelerden Taylor açılımlarını (1, 3, 5, 7, 9, 11 ve 13) gösteriyor.

Taylor serisi matematikte, bir fonksiyonun, o fonksiyonun terimlerinin tek bir noktadaki türev değerlerinden hesaplanan sonsuz toplamı şeklinde yazılması şeklindeki gösterimi/açılımıdır. Adını İngiliz matematikçi Brook Taylor'dan almıştır. Eğer seri sıfır merkezli ise ( a = 0 {\displaystyle a=0} {\displaystyle a=0}), Taylor serisi daha basit bir biçime girer ve bu özel seriye İskoç matematikçi Colin Maclaurin'e istinaden Maclaurin serisi denir. Bir serinin terimlerinden sonlu bir sayı kadarını kullanmak, bu seriyi bir fonksiyona yakınsamak için genel bir yöntemdir. Taylor serisi, Taylor polinomunun limiti olarak da görülebilir.

Tanım

[değiştir | kaynağı değiştir]
Üstel fonksiyon (maviyle gösterilen) ve bu fonksiyonun a=0 değerindeki Taylor serisinin ilk n+1 teriminin toplamı (kırmızıyla gösterilen).

Her dereceden türevli, gerçel ya da karmaşık bir f ( x ) {\displaystyle f(x)} {\displaystyle f(x)} fonksiyonunun a gerçel ya da karmaşık bir sayı olmak üzere ( a − r , a + r ) {\displaystyle (a-r,a+r)} {\displaystyle (a-r,a+r)} aralığındaki Taylor serisi şu şekilde tanımlanmıştır:

f ( x ) = f ( a ) + f ′ ( a ) 1 ! ( x − a ) + f ″ ( a ) 2 ! ( x − a ) 2 + … + f ( n ) ( a ) n ! ( x − a ) n + … {\displaystyle f(x)=f(a)+{\frac {f'(a)}{1!}}(x-a)+{\frac {f''(a)}{2!}}(x-a)^{2}+\ldots +{\frac {f^{(n)}(a)}{n!}}(x-a)^{n}+\ldots } {\displaystyle f(x)=f(a)+{\frac {f'(a)}{1!}}(x-a)+{\frac {f''(a)}{2!}}(x-a)^{2}+\ldots +{\frac {f^{(n)}(a)}{n!}}(x-a)^{n}+\ldots }

Daha düzenli bir gösterim olan Sigma gösterimiyle ise şu şekilde yazılır:

= ∑ n = 0 ∞ f ( n ) ( a ) n ! ( x − a ) n {\displaystyle =\sum _{n=0}^{\infty }{\frac {f^{(n)}(a)}{n!}}(x-a)^{n}} {\displaystyle =\sum _{n=0}^{\infty }{\frac {f^{(n)}(a)}{n!}}(x-a)^{n}}

Burada n ! {\displaystyle n!} {\displaystyle n!}, n faktöriyeli; ƒ (n)(a) ise f fonksiyonunun n. dereceden türevinin a noktasındaki değerini belirtmektedir. f fonksiyonunun sıfırıncı dereceden türevi f' in kendisiyle tanımlanmıştır ve (x − a)0 ve 0!, 1'e eşit olarak kabul edilmiştir.

Maclaurin serisi

[değiştir | kaynağı değiştir]

a=0 özel durumunda seri, Maclaurin serisi olarak adlandırılır:

f ( 0 ) + f ′ ( 0 ) x + f ″ ( 0 ) 2 ! x 2 + f ( 3 ) ( 0 ) 3 ! x 3 + ⋯ {\displaystyle f(0)+f'(0)x+{\frac {f''(0)}{2!}}x^{2}+{\frac {f^{(3)}(0)}{3!}}x^{3}+\cdots } {\displaystyle f(0)+f'(0)x+{\frac {f''(0)}{2!}}x^{2}+{\frac {f^{(3)}(0)}{3!}}x^{3}+\cdots }

Örnekler

[değiştir | kaynağı değiştir]

Herhangi bir çokterimlinin Maclaurin serisi, kendisidir.

(1 − x)−1 için Maclaurin serisi,

1 + x + x 2 + x 3 + ⋯ {\displaystyle 1+x+x^{2}+x^{3}+\cdots \!} {\displaystyle 1+x+x^{2}+x^{3}+\cdots \!} geometrik serisidir.

x-1 fonksiyonunun a=1 değerindeki Taylor serisi de,

1 − ( x − 1 ) + ( x − 1 ) 2 − ( x − 1 ) 3 + ⋯ {\displaystyle 1-(x-1)+(x-1)^{2}-(x-1)^{3}+\cdots \!} {\displaystyle 1-(x-1)+(x-1)^{2}-(x-1)^{3}+\cdots \!} dir.

Yukarıdaki Maclaurin serisinin integralini alarak −ln(1 − x) fonksiyonunun Maclaurin serisini buluruz: (burada ln doğal logaritmayı ifade eder)

x + x 2 2 + x 3 3 + x 4 4 + ⋯ {\displaystyle x+{\frac {x^{2}}{2}}+{\frac {x^{3}}{3}}+{\frac {x^{4}}{4}}+\cdots \!} {\displaystyle x+{\frac {x^{2}}{2}}+{\frac {x^{3}}{3}}+{\frac {x^{4}}{4}}+\cdots \!}

Ve bu seriye ilişkin ln(x) fonksiyonunun a=1 değerindeki Taylor serisi ise,

( x − 1 ) − ( x − 1 ) 2 2 + ( x − 1 ) 3 3 − ( x − 1 ) 4 4 + ⋯ . {\displaystyle (x-1)-{\frac {(x-1)^{2}}{2}}+{\frac {(x-1)^{3}}{3}}-{\frac {(x-1)^{4}}{4}}+\cdots .\!} {\displaystyle (x-1)-{\frac {(x-1)^{2}}{2}}+{\frac {(x-1)^{3}}{3}}-{\frac {(x-1)^{4}}{4}}+\cdots .\!} dir.

a = 0 noktasında ex üstel fonksiyonu için Taylor serisi:),

1 + x 1 1 ! + x 2 2 ! + x 3 3 ! + x 4 4 ! + x 5 5 ! + ⋯ = 1 + x + x 2 2 + x 3 6 + x 4 24 + x 5 120 + ⋯ . {\displaystyle 1+{\frac {x^{1}}{1!}}+{\frac {x^{2}}{2!}}+{\frac {x^{3}}{3!}}+{\frac {x^{4}}{4!}}+{\frac {x^{5}}{5!}}+\cdots \quad =\quad 1+x+{\frac {x^{2}}{2}}+{\frac {x^{3}}{6}}+{\frac {x^{4}}{24}}+{\frac {x^{5}}{120}}+\cdots .\!} {\displaystyle 1+{\frac {x^{1}}{1!}}+{\frac {x^{2}}{2!}}+{\frac {x^{3}}{3!}}+{\frac {x^{4}}{4!}}+{\frac {x^{5}}{5!}}+\cdots \quad =\quad 1+x+{\frac {x^{2}}{2}}+{\frac {x^{3}}{6}}+{\frac {x^{4}}{24}}+{\frac {x^{5}}{120}}+\cdots .\!} dir.

ex'in x'e göre türevi yine ex 'e ve e0 de 1'e eşit olduğundan yukarıdaki açılım sadeleşir. Bu sadeleşme sonucunda da sonsuz toplamdaki her terimin payında (x − 0)n terimi, paydasındaysa n! terimi kalır.

Yakınsaklık

[değiştir | kaynağı değiştir]
Pembeyle çizilmiş, orijin merkezli sinüs fonksiyonunun yedinci dereceden Taylor çokterimlisininin bir periyodunun çizimi, maviyle çizilmiş sinüs fonksiyonuna gittikçe yaklaşır.
log(1+x) için Taylor çokterimlisi sadece −1 < x ≤ 1 aralığında hassas ve doğru bir şekilde yaklaşır. x > 1 için daha yüksek dereceden Taylor çokterimlilerinin daha kötü yaklaşıklıklar vereceğini unutmayınız.

Her fonksiyonun Taylor serisi yakınsak olmak zorunda değildir. Yakınsak Taylor serili fonksiyonlar kümesi, bir düz fonksiyonların Frechet uzayında bir eksik kümedir. Bu fonksiyonların dışında, genelde sözü geçen çoğu fonksiyonun Taylor serisi yakınsamaz.

Bir f fonksiyonunun yakınsak Taylor serisinin limiti genelde f(x)'in fonksiyon değerine eşit olmak zorunda olmamasına rağmen pratikte eşittir. Örneğin;

f ( x ) = { e − 1 / x 2 i f   x ≠ 0 0 i f   x = 0 {\displaystyle f(x)={\begin{cases}e^{-1/x^{2}}&\mathrm {if} \ x\not =0\\0&\mathrm {if} \ x=0\end{cases}}} {\displaystyle f(x)={\begin{cases}e^{-1/x^{2}}&\mathrm {if} \ x\not =0\\0&\mathrm {if} \ x=0\end{cases}}}

fonksiyonu x=0'da sonsuz türevlidir ve bu noktadaki tüm türevleri sıfırdır.

Analitik fonksiyonlar

[değiştir | kaynağı değiştir]
e −1/x²'nin grafiği.

Eğer seri belirtilen aralıktaki her x {\displaystyle x} {\displaystyle x} noktasında f ( x ) {\displaystyle f(x)} {\displaystyle f(x)}'e yakınsıyorsa f(x) analitik bir fonksiyon olarak adlandırılır. Her sonsuz türevlenebilir fonksiyon analitik değildir. Örneğin, f(x) =e −1/x², x ≠ 0 ve f ( 0 ) = 0 {\displaystyle f(0)=0} {\displaystyle f(0)=0} fonksiyonunun Taylor serisi sıfıra denktir ancak fonksiyonun kendisi sıfırdan farklıdır.

Kullanım Alanları

[değiştir | kaynağı değiştir]

Taylor serileri, fonksiyonların (ör. logaritma) verilen bir noktadaki sayisal değerlerini bulmak için kullanılabilirler. Buna ek olarak, türev ya da integral de işlemleri seriye açılıp daha kolay işlem yapılabilmektedir.

Ayrıca bakınız

[değiştir | kaynağı değiştir]
  • Matematiksel seriler listesi


Otorite kontrolü Bunu Vikiveri'de düzenleyin
  • GND: 4184548-1
  • LCCN: sh85120247
  • NLI: 987007531746505171
"https://tr.wikipedia.org/w/index.php?title=Taylor_serisi&oldid=35169839" sayfasından alınmıştır
Kategoriler:
  • Matematiksel seriler
  • Analiz (matematik)
Gizli kategoriler:
  • Kaynakları olmayan maddeler Haziran 2016
  • GND tanımlayıcısı olan Vikipedi maddeleri
  • LCCN tanımlayıcısı olan Vikipedi maddeleri
  • NLI tanımlayıcısı olan Vikipedi maddeleri
  • Sayfa en son 14.29, 1 Nisan 2025 tarihinde değiştirildi.
  • Metin Creative Commons Atıf-AynıLisanslaPaylaş Lisansı altındadır ve ek koşullar uygulanabilir. Bu siteyi kullanarak Kullanım Şartlarını ve Gizlilik Politikasını kabul etmiş olursunuz.
    Vikipedi® (ve Wikipedia®) kâr amacı gütmeyen kuruluş olan Wikimedia Foundation, Inc. tescilli markasıdır.
  • Gizlilik politikası
  • Vikipedi hakkında
  • Sorumluluk reddi
  • Davranış Kuralları
  • Geliştiriciler
  • İstatistikler
  • Çerez politikası
  • Mobil görünüm
  • Wikimedia Foundation
  • Powered by MediaWiki
Taylor serisi
Konu ekle