Matematiksel seriler listesi - Vikipedi
İçeriğe atla
Ana menü
Gezinti
  • Anasayfa
  • Hakkımızda
  • İçindekiler
  • Rastgele madde
  • Seçkin içerik
  • Yakınımdakiler
Katılım
  • Deneme tahtası
  • Köy çeşmesi
  • Son değişiklikler
  • Dosya yükle
  • Topluluk portalı
  • Wikimedia dükkânı
  • Yardım
  • Özel sayfalar
Vikipedi Özgür Ansiklopedi
Ara
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç

İçindekiler

  • Giriş
  • 1 Kuvvetler toplamı
  • 2 Kuvvet serileri
    • 2.1 Düşük mertebeli polilogaritmalar
    • 2.2 Üstel fonksiyon
    • 2.3 Trigonometrik, ters trigonometrik, hiperbolik ve ters hiperbolik fonksiyonlar ilişkisi
    • 2.4 Değiştirilmiş faktöriyel paydalar
    • 2.5 Binom katsayıları
    • 2.6 Harmonik sayılar
  • 3 Binom katsayıları
  • 4 Trigonometrik fonksiyonlar
  • 5 Rasyonel fonksiyonlar
  • 6 Üstel fonksiyon
  • 7 Nümerik seriler
    • 7.1 Alternatif harmonik seriler
    • 7.2 Faktöriyellerin tersinin toplamı
    • 7.3 Trigonometri ve π
    • 7.4 Üçgensel sayıların tersi
    • 7.5 Dörtyüzlüsel sayıların tersi
    • 7.6 Üstel ve logaritmalar
  • 8 Ayrıca bakınız
  • 9 Notlar
  • 10 Kaynakça

Matematiksel seriler listesi

  • العربية
  • Bosanski
  • English
  • Español
  • فارسی
  • Bahasa Indonesia
  • İtaliano
  • ភាសាខ្មែរ
  • Português
  • Simple English
  • Українська
  • 中文
Bağlantıları değiştir
  • Madde
  • Tartışma
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Araçlar
Eylemler
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Genel
  • Sayfaya bağlantılar
  • İlgili değişiklikler
  • Kalıcı bağlantı
  • Sayfa bilgisi
  • Bu sayfayı kaynak göster
  • Kısaltılmış URL'yi al
  • Karekodu indir
Yazdır/dışa aktar
  • Bir kitap oluştur
  • PDF olarak indir
  • Basılmaya uygun görünüm
Diğer projelerde
  • Vikiveri ögesi
Görünüm
Vikipedi, özgür ansiklopedi
Ayrıca bakınız: Seri (matematik) § Sayısal seri örnekleri ve Toplam

Aşağıdaki matematiksel seriler listesi, sonlu ve sonsuz toplamlar için formüller içerir. Toplamları değerlendirmek için diğer araçlarla birlikte kullanılabilir.

  • Burada 0 0 {\displaystyle 0^{0}} {\displaystyle 0^{0}}, 1 {\displaystyle 1} {\displaystyle 1} değerine sahip olduğu kabul edilir
  • { x } {\displaystyle \{x\}} {\displaystyle \{x\}}, x {\displaystyle x} {\displaystyle x}'in kesirli kısmını ifade eder.
  • B n ( x ) {\displaystyle B_{n}(x)} {\displaystyle B_{n}(x)} bir Bernoulli polinomudur.
  • B n {\displaystyle B_{n}} {\displaystyle B_{n}} bir Bernoulli sayısıdır ve burada; B 1 = − 1 2 {\displaystyle B_{1}=-{\frac {1}{2}}} {\displaystyle B_{1}=-{\frac {1}{2}}}'dir.
  • E n {\displaystyle E_{n}} {\displaystyle E_{n}} bir Euler sayısıdır.
  • ζ ( s ) {\displaystyle \zeta (s)} {\displaystyle \zeta (s)} Riemann zeta fonksiyonudur.
  • Γ ( z ) {\displaystyle \Gamma (z)} {\displaystyle \Gamma (z)} gama fonksiyonudur.
  • ψ n ( z ) {\displaystyle \psi _{n}(z)} {\displaystyle \psi _{n}(z)} bir poligama fonksiyonudur.
  • Li s ⁡ ( z ) {\displaystyle \operatorname {Li} _{s}(z)} {\displaystyle \operatorname {Li} _{s}(z)} bir polilogaritmadır.
  • ( n k ) {\displaystyle n \choose k} {\displaystyle n \choose k} binom katsayısıdır.
  • exp ⁡ ( x ) {\displaystyle \exp(x)} {\displaystyle \exp(x)}, x {\displaystyle x} {\displaystyle x}'in üstel'ini belirtir.

Kuvvetler toplamı

[değiştir | kaynağı değiştir]

Bkz. Faulhaber formülü.

  • ∑ k = 0 m k n − 1 = B n ( m + 1 ) − B n n {\displaystyle \sum _{k=0}^{m}k^{n-1}={\frac {B_{n}(m+1)-B_{n}}{n}}} {\displaystyle \sum _{k=0}^{m}k^{n-1}={\frac {B_{n}(m+1)-B_{n}}{n}}}

İlk birkaç değer şunlardır:

  • ∑ k = 1 m k = m ( m + 1 ) 2 {\displaystyle \sum _{k=1}^{m}k={\frac {m(m+1)}{2}}} {\displaystyle \sum _{k=1}^{m}k={\frac {m(m+1)}{2}}}
  • ∑ k = 1 m k 2 = m ( m + 1 ) ( 2 m + 1 ) 6 = m 3 3 + m 2 2 + m 6 {\displaystyle \sum _{k=1}^{m}k^{2}={\frac {m(m+1)(2m+1)}{6}}={\frac {m^{3}}{3}}+{\frac {m^{2}}{2}}+{\frac {m}{6}}} {\displaystyle \sum _{k=1}^{m}k^{2}={\frac {m(m+1)(2m+1)}{6}}={\frac {m^{3}}{3}}+{\frac {m^{2}}{2}}+{\frac {m}{6}}}
  • ∑ k = 1 m k 3 = [ m ( m + 1 ) 2 ] 2 = m 4 4 + m 3 2 + m 2 4 {\displaystyle \sum _{k=1}^{m}k^{3}=\left[{\frac {m(m+1)}{2}}\right]^{2}={\frac {m^{4}}{4}}+{\frac {m^{3}}{2}}+{\frac {m^{2}}{4}}} {\displaystyle \sum _{k=1}^{m}k^{3}=\left[{\frac {m(m+1)}{2}}\right]^{2}={\frac {m^{4}}{4}}+{\frac {m^{3}}{2}}+{\frac {m^{2}}{4}}}

Bkz. zeta sabitleri.

  • ζ ( 2 n ) = ∑ k = 1 ∞ 1 k 2 n = ( − 1 ) n + 1 B 2 n ( 2 π ) 2 n 2 ( 2 n ) ! {\displaystyle \zeta (2n)=\sum _{k=1}^{\infty }{\frac {1}{k^{2n}}}=(-1)^{n+1}{\frac {B_{2n}(2\pi )^{2n}}{2(2n)!}}} {\displaystyle \zeta (2n)=\sum _{k=1}^{\infty }{\frac {1}{k^{2n}}}=(-1)^{n+1}{\frac {B_{2n}(2\pi )^{2n}}{2(2n)!}}}

İlk birkaç değer şunlardır:

  • ζ ( 2 ) = ∑ k = 1 ∞ 1 k 2 = π 2 6 {\displaystyle \zeta (2)=\sum _{k=1}^{\infty }{\frac {1}{k^{2}}}={\frac {\pi ^{2}}{6}}} {\displaystyle \zeta (2)=\sum _{k=1}^{\infty }{\frac {1}{k^{2}}}={\frac {\pi ^{2}}{6}}} (Basel problemi)
  • ζ ( 4 ) = ∑ k = 1 ∞ 1 k 4 = π 4 90 {\displaystyle \zeta (4)=\sum _{k=1}^{\infty }{\frac {1}{k^{4}}}={\frac {\pi ^{4}}{90}}} {\displaystyle \zeta (4)=\sum _{k=1}^{\infty }{\frac {1}{k^{4}}}={\frac {\pi ^{4}}{90}}}
  • ζ ( 6 ) = ∑ k = 1 ∞ 1 k 6 = π 6 945 {\displaystyle \zeta (6)=\sum _{k=1}^{\infty }{\frac {1}{k^{6}}}={\frac {\pi ^{6}}{945}}} {\displaystyle \zeta (6)=\sum _{k=1}^{\infty }{\frac {1}{k^{6}}}={\frac {\pi ^{6}}{945}}}

Kuvvet serileri

[değiştir | kaynağı değiştir]

Düşük mertebeli polilogaritmalar

[değiştir | kaynağı değiştir]

Sonlu toplamlar:

  • ∑ k = m n z k = z m − z n + 1 1 − z {\displaystyle \sum _{k=m}^{n}z^{k}={\frac {z^{m}-z^{n+1}}{1-z}}} {\displaystyle \sum _{k=m}^{n}z^{k}={\frac {z^{m}-z^{n+1}}{1-z}}}, (geometrik seri)
  • ∑ k = 0 n z k = 1 − z n + 1 1 − z {\displaystyle \sum _{k=0}^{n}z^{k}={\frac {1-z^{n+1}}{1-z}}} {\displaystyle \sum _{k=0}^{n}z^{k}={\frac {1-z^{n+1}}{1-z}}}
  • ∑ k = 1 n z k = 1 − z n + 1 1 − z − 1 = z − z n + 1 1 − z {\displaystyle \sum _{k=1}^{n}z^{k}={\frac {1-z^{n+1}}{1-z}}-1={\frac {z-z^{n+1}}{1-z}}} {\displaystyle \sum _{k=1}^{n}z^{k}={\frac {1-z^{n+1}}{1-z}}-1={\frac {z-z^{n+1}}{1-z}}}
  • ∑ k = 1 n k z k = z 1 − ( n + 1 ) z n + n z n + 1 ( 1 − z ) 2 {\displaystyle \sum _{k=1}^{n}kz^{k}=z{\frac {1-(n+1)z^{n}+nz^{n+1}}{(1-z)^{2}}}} {\displaystyle \sum _{k=1}^{n}kz^{k}=z{\frac {1-(n+1)z^{n}+nz^{n+1}}{(1-z)^{2}}}}
  • ∑ k = 1 n k 2 z k = z 1 + z − ( n + 1 ) 2 z n + ( 2 n 2 + 2 n − 1 ) z n + 1 − n 2 z n + 2 ( 1 − z ) 3 {\displaystyle \sum _{k=1}^{n}k^{2}z^{k}=z{\frac {1+z-(n+1)^{2}z^{n}+(2n^{2}+2n-1)z^{n+1}-n^{2}z^{n+2}}{(1-z)^{3}}}} {\displaystyle \sum _{k=1}^{n}k^{2}z^{k}=z{\frac {1+z-(n+1)^{2}z^{n}+(2n^{2}+2n-1)z^{n+1}-n^{2}z^{n+2}}{(1-z)^{3}}}}
  • ∑ k = 1 n k m z k = ( z d d z ) m 1 − z n + 1 1 − z {\displaystyle \sum _{k=1}^{n}k^{m}z^{k}=\left(z{\frac {d}{dz}}\right)^{m}{\frac {1-z^{n+1}}{1-z}}} {\displaystyle \sum _{k=1}^{n}k^{m}z^{k}=\left(z{\frac {d}{dz}}\right)^{m}{\frac {1-z^{n+1}}{1-z}}}

Sonsuz toplamlar, | z | < 1 {\displaystyle |z|<1} {\displaystyle |z|<1} için geçerli (bkz. polilogaritma):

  • Li n ⁡ ( z ) = ∑ k = 1 ∞ z k k n {\displaystyle \operatorname {Li} _{n}(z)=\sum _{k=1}^{\infty }{\frac {z^{k}}{k^{n}}}} {\displaystyle \operatorname {Li} _{n}(z)=\sum _{k=1}^{\infty }{\frac {z^{k}}{k^{n}}}}

Aşağıdaki, düşük tam sayı mertebeli polilogaritmaları kapalı form içinde özyinelemeli olarak hesaplamak için yararlı bir özelliktir:

  • d d z Li n ⁡ ( z ) = Li n − 1 ⁡ ( z ) z {\displaystyle {\frac {\mathrm {d} }{\mathrm {d} z}}\operatorname {Li} _{n}(z)={\frac {\operatorname {Li} _{n-1}(z)}{z}}} {\displaystyle {\frac {\mathrm {d} }{\mathrm {d} z}}\operatorname {Li} _{n}(z)={\frac {\operatorname {Li} _{n-1}(z)}{z}}}
  • Li 1 ⁡ ( z ) = ∑ k = 1 ∞ z k k = − ln ⁡ ( 1 − z ) {\displaystyle \operatorname {Li} _{1}(z)=\sum _{k=1}^{\infty }{\frac {z^{k}}{k}}=-\ln(1-z)} {\displaystyle \operatorname {Li} _{1}(z)=\sum _{k=1}^{\infty }{\frac {z^{k}}{k}}=-\ln(1-z)}
  • Li 0 ⁡ ( z ) = ∑ k = 1 ∞ z k = z 1 − z {\displaystyle \operatorname {Li} _{0}(z)=\sum _{k=1}^{\infty }z^{k}={\frac {z}{1-z}}} {\displaystyle \operatorname {Li} _{0}(z)=\sum _{k=1}^{\infty }z^{k}={\frac {z}{1-z}}}
  • Li − 1 ⁡ ( z ) = ∑ k = 1 ∞ k z k = z ( 1 − z ) 2 {\displaystyle \operatorname {Li} _{-1}(z)=\sum _{k=1}^{\infty }kz^{k}={\frac {z}{(1-z)^{2}}}} {\displaystyle \operatorname {Li} _{-1}(z)=\sum _{k=1}^{\infty }kz^{k}={\frac {z}{(1-z)^{2}}}}
  • Li − 2 ⁡ ( z ) = ∑ k = 1 ∞ k 2 z k = z ( 1 + z ) ( 1 − z ) 3 {\displaystyle \operatorname {Li} _{-2}(z)=\sum _{k=1}^{\infty }k^{2}z^{k}={\frac {z(1+z)}{(1-z)^{3}}}} {\displaystyle \operatorname {Li} _{-2}(z)=\sum _{k=1}^{\infty }k^{2}z^{k}={\frac {z(1+z)}{(1-z)^{3}}}}
  • Li − 3 ⁡ ( z ) = ∑ k = 1 ∞ k 3 z k = z ( 1 + 4 z + z 2 ) ( 1 − z ) 4 {\displaystyle \operatorname {Li} _{-3}(z)=\sum _{k=1}^{\infty }k^{3}z^{k}={\frac {z(1+4z+z^{2})}{(1-z)^{4}}}} {\displaystyle \operatorname {Li} _{-3}(z)=\sum _{k=1}^{\infty }k^{3}z^{k}={\frac {z(1+4z+z^{2})}{(1-z)^{4}}}}
  • Li − 4 ⁡ ( z ) = ∑ k = 1 ∞ k 4 z k = z ( 1 + z ) ( 1 + 10 z + z 2 ) ( 1 − z ) 5 {\displaystyle \operatorname {Li} _{-4}(z)=\sum _{k=1}^{\infty }k^{4}z^{k}={\frac {z(1+z)(1+10z+z^{2})}{(1-z)^{5}}}} {\displaystyle \operatorname {Li} _{-4}(z)=\sum _{k=1}^{\infty }k^{4}z^{k}={\frac {z(1+z)(1+10z+z^{2})}{(1-z)^{5}}}}

Üstel fonksiyon

[değiştir | kaynağı değiştir]
  • ∑ k = 0 ∞ z k k ! = e z {\displaystyle \sum _{k=0}^{\infty }{\frac {z^{k}}{k!}}=e^{z}} {\displaystyle \sum _{k=0}^{\infty }{\frac {z^{k}}{k!}}=e^{z}}
  • ∑ k = 0 ∞ k z k k ! = z e z {\displaystyle \sum _{k=0}^{\infty }k{\frac {z^{k}}{k!}}=ze^{z}} {\displaystyle \sum _{k=0}^{\infty }k{\frac {z^{k}}{k!}}=ze^{z}} (bkz. Poisson dağılımı ortalaması)
  • ∑ k = 0 ∞ k 2 z k k ! = ( z + z 2 ) e z {\displaystyle \sum _{k=0}^{\infty }k^{2}{\frac {z^{k}}{k!}}=(z+z^{2})e^{z}} {\displaystyle \sum _{k=0}^{\infty }k^{2}{\frac {z^{k}}{k!}}=(z+z^{2})e^{z}} (bkz. Poisson dağılımının ikinci momenti)
  • ∑ k = 0 ∞ k 3 z k k ! = ( z + 3 z 2 + z 3 ) e z {\displaystyle \sum _{k=0}^{\infty }k^{3}{\frac {z^{k}}{k!}}=(z+3z^{2}+z^{3})e^{z}} {\displaystyle \sum _{k=0}^{\infty }k^{3}{\frac {z^{k}}{k!}}=(z+3z^{2}+z^{3})e^{z}}
  • ∑ k = 0 ∞ k 4 z k k ! = ( z + 7 z 2 + 6 z 3 + z 4 ) e z {\displaystyle \sum _{k=0}^{\infty }k^{4}{\frac {z^{k}}{k!}}=(z+7z^{2}+6z^{3}+z^{4})e^{z}} {\displaystyle \sum _{k=0}^{\infty }k^{4}{\frac {z^{k}}{k!}}=(z+7z^{2}+6z^{3}+z^{4})e^{z}}
  • ∑ k = 0 ∞ k n z k k ! = z d d z ∑ k = 0 ∞ k n − 1 z k k ! = e z T n ( z ) {\displaystyle \sum _{k=0}^{\infty }k^{n}{\frac {z^{k}}{k!}}=z{\frac {d}{dz}}\sum _{k=0}^{\infty }k^{n-1}{\frac {z^{k}}{k!}}\,\!=e^{z}T_{n}(z)} {\displaystyle \sum _{k=0}^{\infty }k^{n}{\frac {z^{k}}{k!}}=z{\frac {d}{dz}}\sum _{k=0}^{\infty }k^{n-1}{\frac {z^{k}}{k!}}\,\!=e^{z}T_{n}(z)}

burada; T n ( z ) {\displaystyle T_{n}(z)} {\displaystyle T_{n}(z)} Touchard polinomlarıdır.

Trigonometrik, ters trigonometrik, hiperbolik ve ters hiperbolik fonksiyonlar ilişkisi

[değiştir | kaynağı değiştir]
  • ∑ k = 0 ∞ ( − 1 ) k z 2 k + 1 ( 2 k + 1 ) ! = sin ⁡ z {\displaystyle \sum _{k=0}^{\infty }{\frac {(-1)^{k}z^{2k+1}}{(2k+1)!}}=\sin z} {\displaystyle \sum _{k=0}^{\infty }{\frac {(-1)^{k}z^{2k+1}}{(2k+1)!}}=\sin z}
  • ∑ k = 0 ∞ z 2 k + 1 ( 2 k + 1 ) ! = sinh ⁡ z {\displaystyle \sum _{k=0}^{\infty }{\frac {z^{2k+1}}{(2k+1)!}}=\sinh z} {\displaystyle \sum _{k=0}^{\infty }{\frac {z^{2k+1}}{(2k+1)!}}=\sinh z}
  • ∑ k = 0 ∞ ( − 1 ) k z 2 k ( 2 k ) ! = cos ⁡ z {\displaystyle \sum _{k=0}^{\infty }{\frac {(-1)^{k}z^{2k}}{(2k)!}}=\cos z} {\displaystyle \sum _{k=0}^{\infty }{\frac {(-1)^{k}z^{2k}}{(2k)!}}=\cos z}
  • ∑ k = 0 ∞ z 2 k ( 2 k ) ! = cosh ⁡ z {\displaystyle \sum _{k=0}^{\infty }{\frac {z^{2k}}{(2k)!}}=\cosh z} {\displaystyle \sum _{k=0}^{\infty }{\frac {z^{2k}}{(2k)!}}=\cosh z}
  • ∑ k = 1 ∞ ( − 1 ) k − 1 ( 2 2 k − 1 ) 2 2 k B 2 k z 2 k − 1 ( 2 k ) ! = tan ⁡ z , | z | < π 2 {\displaystyle \sum _{k=1}^{\infty }{\frac {(-1)^{k-1}(2^{2k}-1)2^{2k}B_{2k}z^{2k-1}}{(2k)!}}=\tan z,|z|<{\frac {\pi }{2}}} {\displaystyle \sum _{k=1}^{\infty }{\frac {(-1)^{k-1}(2^{2k}-1)2^{2k}B_{2k}z^{2k-1}}{(2k)!}}=\tan z,|z|<{\frac {\pi }{2}}}
  • ∑ k = 1 ∞ ( 2 2 k − 1 ) 2 2 k B 2 k z 2 k − 1 ( 2 k ) ! = tanh ⁡ z , | z | < π 2 {\displaystyle \sum _{k=1}^{\infty }{\frac {(2^{2k}-1)2^{2k}B_{2k}z^{2k-1}}{(2k)!}}=\tanh z,|z|<{\frac {\pi }{2}}} {\displaystyle \sum _{k=1}^{\infty }{\frac {(2^{2k}-1)2^{2k}B_{2k}z^{2k-1}}{(2k)!}}=\tanh z,|z|<{\frac {\pi }{2}}}
  • ∑ k = 0 ∞ ( − 1 ) k 2 2 k B 2 k z 2 k − 1 ( 2 k ) ! = cot ⁡ z , | z | < π {\displaystyle \sum _{k=0}^{\infty }{\frac {(-1)^{k}2^{2k}B_{2k}z^{2k-1}}{(2k)!}}=\cot z,|z|<\pi } {\displaystyle \sum _{k=0}^{\infty }{\frac {(-1)^{k}2^{2k}B_{2k}z^{2k-1}}{(2k)!}}=\cot z,|z|<\pi }
  • ∑ k = 0 ∞ 2 2 k B 2 k z 2 k − 1 ( 2 k ) ! = coth ⁡ z , | z | < π {\displaystyle \sum _{k=0}^{\infty }{\frac {2^{2k}B_{2k}z^{2k-1}}{(2k)!}}=\coth z,|z|<\pi } {\displaystyle \sum _{k=0}^{\infty }{\frac {2^{2k}B_{2k}z^{2k-1}}{(2k)!}}=\coth z,|z|<\pi }
  • ∑ k = 0 ∞ ( − 1 ) k − 1 ( 2 2 k − 2 ) B 2 k z 2 k − 1 ( 2 k ) ! = csc ⁡ z , | z | < π {\displaystyle \sum _{k=0}^{\infty }{\frac {(-1)^{k-1}(2^{2k}-2)B_{2k}z^{2k-1}}{(2k)!}}=\csc z,|z|<\pi } {\displaystyle \sum _{k=0}^{\infty }{\frac {(-1)^{k-1}(2^{2k}-2)B_{2k}z^{2k-1}}{(2k)!}}=\csc z,|z|<\pi }
  • ∑ k = 0 ∞ − ( 2 2 k − 2 ) B 2 k z 2 k − 1 ( 2 k ) ! = csch ⁡ z , | z | < π {\displaystyle \sum _{k=0}^{\infty }{\frac {-(2^{2k}-2)B_{2k}z^{2k-1}}{(2k)!}}=\operatorname {csch} z,|z|<\pi } {\displaystyle \sum _{k=0}^{\infty }{\frac {-(2^{2k}-2)B_{2k}z^{2k-1}}{(2k)!}}=\operatorname {csch} z,|z|<\pi }
  • ∑ k = 0 ∞ ( − 1 ) k E 2 k z 2 k ( 2 k ) ! = sech ⁡ z , | z | < π 2 {\displaystyle \sum _{k=0}^{\infty }{\frac {(-1)^{k}E_{2k}z^{2k}}{(2k)!}}=\operatorname {sech} z,|z|<{\frac {\pi }{2}}} {\displaystyle \sum _{k=0}^{\infty }{\frac {(-1)^{k}E_{2k}z^{2k}}{(2k)!}}=\operatorname {sech} z,|z|<{\frac {\pi }{2}}}
  • ∑ k = 0 ∞ E 2 k z 2 k ( 2 k ) ! = sec ⁡ z , | z | < π 2 {\displaystyle \sum _{k=0}^{\infty }{\frac {E_{2k}z^{2k}}{(2k)!}}=\sec z,|z|<{\frac {\pi }{2}}} {\displaystyle \sum _{k=0}^{\infty }{\frac {E_{2k}z^{2k}}{(2k)!}}=\sec z,|z|<{\frac {\pi }{2}}}
  • ∑ k = 1 ∞ ( − 1 ) k − 1 z 2 k ( 2 k ) ! = ver ⁡ z {\displaystyle \sum _{k=1}^{\infty }{\frac {(-1)^{k-1}z^{2k}}{(2k)!}}=\operatorname {ver} z} {\displaystyle \sum _{k=1}^{\infty }{\frac {(-1)^{k-1}z^{2k}}{(2k)!}}=\operatorname {ver} z} (versine)
  • ∑ k = 1 ∞ ( − 1 ) k − 1 z 2 k 2 ( 2 k ) ! = hav ⁡ z {\displaystyle \sum _{k=1}^{\infty }{\frac {(-1)^{k-1}z^{2k}}{2(2k)!}}=\operatorname {hav} z} {\displaystyle \sum _{k=1}^{\infty }{\frac {(-1)^{k-1}z^{2k}}{2(2k)!}}=\operatorname {hav} z}[1] (haversine)
  • ∑ k = 0 ∞ ( 2 k ) ! z 2 k + 1 2 2 k ( k ! ) 2 ( 2 k + 1 ) = arcsin ⁡ z , | z | ≤ 1 {\displaystyle \sum _{k=0}^{\infty }{\frac {(2k)!z^{2k+1}}{2^{2k}(k!)^{2}(2k+1)}}=\arcsin z,|z|\leq 1} {\displaystyle \sum _{k=0}^{\infty }{\frac {(2k)!z^{2k+1}}{2^{2k}(k!)^{2}(2k+1)}}=\arcsin z,|z|\leq 1}
  • ∑ k = 0 ∞ ( − 1 ) k ( 2 k ) ! z 2 k + 1 2 2 k ( k ! ) 2 ( 2 k + 1 ) = arcsinh ⁡ z , | z | ≤ 1 {\displaystyle \sum _{k=0}^{\infty }{\frac {(-1)^{k}(2k)!z^{2k+1}}{2^{2k}(k!)^{2}(2k+1)}}=\operatorname {arcsinh} {z},|z|\leq 1} {\displaystyle \sum _{k=0}^{\infty }{\frac {(-1)^{k}(2k)!z^{2k+1}}{2^{2k}(k!)^{2}(2k+1)}}=\operatorname {arcsinh} {z},|z|\leq 1}
  • ∑ k = 0 ∞ ( − 1 ) k z 2 k + 1 2 k + 1 = arctan ⁡ z , | z | < 1 {\displaystyle \sum _{k=0}^{\infty }{\frac {(-1)^{k}z^{2k+1}}{2k+1}}=\arctan z,|z|<1} {\displaystyle \sum _{k=0}^{\infty }{\frac {(-1)^{k}z^{2k+1}}{2k+1}}=\arctan z,|z|<1}
  • ∑ k = 0 ∞ z 2 k + 1 2 k + 1 = arctanh ⁡ z , | z | < 1 {\displaystyle \sum _{k=0}^{\infty }{\frac {z^{2k+1}}{2k+1}}=\operatorname {arctanh} z,|z|<1} {\displaystyle \sum _{k=0}^{\infty }{\frac {z^{2k+1}}{2k+1}}=\operatorname {arctanh} z,|z|<1}
  • ln ⁡ 2 + ∑ k = 1 ∞ ( − 1 ) k − 1 ( 2 k ) ! z 2 k 2 2 k + 1 k ( k ! ) 2 = ln ⁡ ( 1 + 1 + z 2 ) , | z | ≤ 1 {\displaystyle \ln 2+\sum _{k=1}^{\infty }{\frac {(-1)^{k-1}(2k)!z^{2k}}{2^{2k+1}k(k!)^{2}}}=\ln \left(1+{\sqrt {1+z^{2}}}\right),|z|\leq 1} {\displaystyle \ln 2+\sum _{k=1}^{\infty }{\frac {(-1)^{k-1}(2k)!z^{2k}}{2^{2k+1}k(k!)^{2}}}=\ln \left(1+{\sqrt {1+z^{2}}}\right),|z|\leq 1}

Değiştirilmiş faktöriyel paydalar

[değiştir | kaynağı değiştir]
  • ∑ k = 0 ∞ ( 4 k ) ! 2 4 k 2 ( 2 k ) ! ( 2 k + 1 ) ! z k = 1 − 1 − z z , | z | < 1 {\displaystyle \sum _{k=0}^{\infty }{\frac {(4k)!}{2^{4k}{\sqrt {2}}(2k)!(2k+1)!}}z^{k}={\sqrt {\frac {1-{\sqrt {1-z}}}{z}}},|z|<1} {\displaystyle \sum _{k=0}^{\infty }{\frac {(4k)!}{2^{4k}{\sqrt {2}}(2k)!(2k+1)!}}z^{k}={\sqrt {\frac {1-{\sqrt {1-z}}}{z}}},|z|<1}[2]
  • ∑ k = 0 ∞ 2 2 k ( k ! ) 2 ( k + 1 ) ( 2 k + 1 ) ! z 2 k + 2 = ( arcsin ⁡ z ) 2 , | z | ≤ 1 {\displaystyle \sum _{k=0}^{\infty }{\frac {2^{2k}(k!)^{2}}{(k+1)(2k+1)!}}z^{2k+2}=\left(\arcsin {z}\right)^{2},|z|\leq 1} {\displaystyle \sum _{k=0}^{\infty }{\frac {2^{2k}(k!)^{2}}{(k+1)(2k+1)!}}z^{2k+2}=\left(\arcsin {z}\right)^{2},|z|\leq 1}[2]
  • ∑ n = 0 ∞ ∏ k = 0 n − 1 ( 4 k 2 + α 2 ) ( 2 n ) ! z 2 n + ∑ n = 0 ∞ α ∏ k = 0 n − 1 [ ( 2 k + 1 ) 2 + α 2 ] ( 2 n + 1 ) ! z 2 n + 1 = e α arcsin ⁡ z , | z | ≤ 1 {\displaystyle \sum _{n=0}^{\infty }{\frac {\prod _{k=0}^{n-1}(4k^{2}+\alpha ^{2})}{(2n)!}}z^{2n}+\sum _{n=0}^{\infty }{\frac {\alpha \prod _{k=0}^{n-1}[(2k+1)^{2}+\alpha ^{2}]}{(2n+1)!}}z^{2n+1}=e^{\alpha \arcsin {z}},|z|\leq 1} {\displaystyle \sum _{n=0}^{\infty }{\frac {\prod _{k=0}^{n-1}(4k^{2}+\alpha ^{2})}{(2n)!}}z^{2n}+\sum _{n=0}^{\infty }{\frac {\alpha \prod _{k=0}^{n-1}[(2k+1)^{2}+\alpha ^{2}]}{(2n+1)!}}z^{2n+1}=e^{\alpha \arcsin {z}},|z|\leq 1}

Binom katsayıları

[değiştir | kaynağı değiştir]
  • ( 1 + z ) α = ∑ k = 0 ∞ ( α k ) z k , | z | < 1 {\displaystyle (1+z)^{\alpha }=\sum _{k=0}^{\infty }{\alpha \choose k}z^{k},|z|<1} {\displaystyle (1+z)^{\alpha }=\sum _{k=0}^{\infty }{\alpha  \choose k}z^{k},|z|<1} (bkz Binom teoremi § Genelleştirilmiş Newton binom teoremi)
  • [3] ∑ k = 0 ∞ ( α + k − 1 k ) z k = 1 ( 1 − z ) α , | z | < 1 {\displaystyle \sum _{k=0}^{\infty }{{\alpha +k-1} \choose k}z^{k}={\frac {1}{(1-z)^{\alpha }}},|z|<1} {\displaystyle \sum _{k=0}^{\infty }{{\alpha +k-1} \choose k}z^{k}={\frac {1}{(1-z)^{\alpha }}},|z|<1}
  • [3] ∑ k = 0 ∞ 1 k + 1 ( 2 k k ) z k = 1 − 1 − 4 z 2 z , | z | ≤ 1 4 {\displaystyle \sum _{k=0}^{\infty }{\frac {1}{k+1}}{2k \choose k}z^{k}={\frac {1-{\sqrt {1-4z}}}{2z}},|z|\leq {\frac {1}{4}}} {\displaystyle \sum _{k=0}^{\infty }{\frac {1}{k+1}}{2k \choose k}z^{k}={\frac {1-{\sqrt {1-4z}}}{2z}},|z|\leq {\frac {1}{4}}}, Catalan sayıları üreteç fonksiyonu
  • [3] ∑ k = 0 ∞ ( 2 k k ) z k = 1 1 − 4 z , | z | < 1 4 {\displaystyle \sum _{k=0}^{\infty }{2k \choose k}z^{k}={\frac {1}{\sqrt {1-4z}}},|z|<{\frac {1}{4}}} {\displaystyle \sum _{k=0}^{\infty }{2k \choose k}z^{k}={\frac {1}{\sqrt {1-4z}}},|z|<{\frac {1}{4}}}, Merkezi binom katsayıları üreteç fonksiyonu
  • [3] ∑ k = 0 ∞ ( 2 k + α k ) z k = 1 1 − 4 z ( 1 − 1 − 4 z 2 z ) α , | z | < 1 4 {\displaystyle \sum _{k=0}^{\infty }{2k+\alpha \choose k}z^{k}={\frac {1}{\sqrt {1-4z}}}\left({\frac {1-{\sqrt {1-4z}}}{2z}}\right)^{\alpha },|z|<{\frac {1}{4}}} {\displaystyle \sum _{k=0}^{\infty }{2k+\alpha  \choose k}z^{k}={\frac {1}{\sqrt {1-4z}}}\left({\frac {1-{\sqrt {1-4z}}}{2z}}\right)^{\alpha },|z|<{\frac {1}{4}}}

Harmonik sayılar

[değiştir | kaynağı değiştir]

(Bkz harmonik sayılar, kendileri H n = ∑ j = 1 n 1 j {\textstyle H_{n}=\sum _{j=1}^{n}{\frac {1}{j}}} {\textstyle H_{n}=\sum _{j=1}^{n}{\frac {1}{j}}} olarak tanımlanmıştır)

  • ∑ k = 1 ∞ H k z k = − ln ⁡ ( 1 − z ) 1 − z , | z | < 1 {\displaystyle \sum _{k=1}^{\infty }H_{k}z^{k}={\frac {-\ln(1-z)}{1-z}},|z|<1} {\displaystyle \sum _{k=1}^{\infty }H_{k}z^{k}={\frac {-\ln(1-z)}{1-z}},|z|<1}
  • ∑ k = 1 ∞ H k k + 1 z k + 1 = 1 2 [ ln ⁡ ( 1 − z ) ] 2 , | z | < 1 {\displaystyle \sum _{k=1}^{\infty }{\frac {H_{k}}{k+1}}z^{k+1}={\frac {1}{2}}\left[\ln(1-z)\right]^{2},\qquad |z|<1} {\displaystyle \sum _{k=1}^{\infty }{\frac {H_{k}}{k+1}}z^{k+1}={\frac {1}{2}}\left[\ln(1-z)\right]^{2},\qquad |z|<1}
  • ∑ k = 1 ∞ ( − 1 ) k − 1 H 2 k 2 k + 1 z 2 k + 1 = 1 2 arctan ⁡ z log ⁡ ( 1 + z 2 ) , | z | < 1 {\displaystyle \sum _{k=1}^{\infty }{\frac {(-1)^{k-1}H_{2k}}{2k+1}}z^{2k+1}={\frac {1}{2}}\arctan {z}\log {(1+z^{2})},\qquad |z|<1} {\displaystyle \sum _{k=1}^{\infty }{\frac {(-1)^{k-1}H_{2k}}{2k+1}}z^{2k+1}={\frac {1}{2}}\arctan {z}\log {(1+z^{2})},\qquad |z|<1}[2]
  • ∑ n = 0 ∞ ∑ k = 0 2 n ( − 1 ) k 2 k + 1 z 4 n + 2 4 n + 2 = 1 4 arctan ⁡ z log ⁡ 1 + z 1 − z , | z | < 1 {\displaystyle \sum _{n=0}^{\infty }\sum _{k=0}^{2n}{\frac {(-1)^{k}}{2k+1}}{\frac {z^{4n+2}}{4n+2}}={\frac {1}{4}}\arctan {z}\log {\frac {1+z}{1-z}},\qquad |z|<1} {\displaystyle \sum _{n=0}^{\infty }\sum _{k=0}^{2n}{\frac {(-1)^{k}}{2k+1}}{\frac {z^{4n+2}}{4n+2}}={\frac {1}{4}}\arctan {z}\log {\frac {1+z}{1-z}},\qquad |z|<1}[2]

Binom katsayıları

[değiştir | kaynağı değiştir]
Ana madde: Binom katsayısı
  • ∑ k = 0 n ( n k ) = 2 n {\displaystyle \sum _{k=0}^{n}{n \choose k}=2^{n}} {\displaystyle \sum _{k=0}^{n}{n \choose k}=2^{n}}
  • ∑ k = 0 n ( − 1 ) k ( n k ) = 0 ,  burada;  n ≥ 1 {\displaystyle \sum _{k=0}^{n}(-1)^{k}{n \choose k}=0,{\text{ burada; }}n\geq 1} {\displaystyle \sum _{k=0}^{n}(-1)^{k}{n \choose k}=0,{\text{ burada; }}n\geq 1}
  • ∑ k = 0 n ( k m ) = ( n + 1 m + 1 ) {\displaystyle \sum _{k=0}^{n}{k \choose m}={n+1 \choose m+1}} {\displaystyle \sum _{k=0}^{n}{k \choose m}={n+1 \choose m+1}}
  • ∑ k = 0 n ( m + k − 1 k ) = ( n + m n ) {\displaystyle \sum _{k=0}^{n}{m+k-1 \choose k}={n+m \choose n}} {\displaystyle \sum _{k=0}^{n}{m+k-1 \choose k}={n+m \choose n}} (bkz Çoklu küme)
  • ∑ k = 0 n ( α k ) ( β n − k ) = ( α + β n ) {\displaystyle \sum _{k=0}^{n}{\alpha \choose k}{\beta \choose n-k}={\alpha +\beta \choose n}} {\displaystyle \sum _{k=0}^{n}{\alpha  \choose k}{\beta  \choose n-k}={\alpha +\beta  \choose n}} (bkz Vandermonde özdeşliği)

Trigonometrik fonksiyonlar

[değiştir | kaynağı değiştir]

Sinüsler ve kosinüsler toplamı, Fourier serileri'nde ortaya çıkar.

  • ∑ k = 1 ∞ cos ⁡ ( k θ ) k = − 1 2 ln ⁡ ( 2 − 2 cos ⁡ θ ) = − ln ⁡ ( 2 sin ⁡ θ 2 ) , 0 < θ < 2 π {\displaystyle \sum _{k=1}^{\infty }{\frac {\cos(k\theta )}{k}}=-{\frac {1}{2}}\ln(2-2\cos \theta )=-\ln \left(2\sin {\frac {\theta }{2}}\right),0<\theta <2\pi } {\displaystyle \sum _{k=1}^{\infty }{\frac {\cos(k\theta )}{k}}=-{\frac {1}{2}}\ln(2-2\cos \theta )=-\ln \left(2\sin {\frac {\theta }{2}}\right),0<\theta <2\pi }
  • ∑ k = 1 ∞ sin ⁡ ( k θ ) k = π − θ 2 , 0 < θ < 2 π {\displaystyle \sum _{k=1}^{\infty }{\frac {\sin(k\theta )}{k}}={\frac {\pi -\theta }{2}},0<\theta <2\pi } {\displaystyle \sum _{k=1}^{\infty }{\frac {\sin(k\theta )}{k}}={\frac {\pi -\theta }{2}},0<\theta <2\pi }
  • ∑ k = 1 ∞ ( − 1 ) k − 1 k cos ⁡ ( k θ ) = 1 2 ln ⁡ ( 2 + 2 cos ⁡ θ ) = ln ⁡ ( 2 cos ⁡ θ 2 ) , 0 ≤ θ < π {\displaystyle \sum _{k=1}^{\infty }{\frac {(-1)^{k-1}}{k}}\cos(k\theta )={\frac {1}{2}}\ln(2+2\cos \theta )=\ln \left(2\cos {\frac {\theta }{2}}\right),0\leq \theta <\pi } {\displaystyle \sum _{k=1}^{\infty }{\frac {(-1)^{k-1}}{k}}\cos(k\theta )={\frac {1}{2}}\ln(2+2\cos \theta )=\ln \left(2\cos {\frac {\theta }{2}}\right),0\leq \theta <\pi }
  • ∑ k = 1 ∞ ( − 1 ) k − 1 k sin ⁡ ( k θ ) = θ 2 , − π 2 ≤ θ ≤ π 2 {\displaystyle \sum _{k=1}^{\infty }{\frac {(-1)^{k-1}}{k}}\sin(k\theta )={\frac {\theta }{2}},-{\frac {\pi }{2}}\leq \theta \leq {\frac {\pi }{2}}} {\displaystyle \sum _{k=1}^{\infty }{\frac {(-1)^{k-1}}{k}}\sin(k\theta )={\frac {\theta }{2}},-{\frac {\pi }{2}}\leq \theta \leq {\frac {\pi }{2}}}
  • ∑ k = 1 ∞ cos ⁡ ( 2 k θ ) 2 k = − 1 2 ln ⁡ ( 2 sin ⁡ θ ) , 0 < θ < π {\displaystyle \sum _{k=1}^{\infty }{\frac {\cos(2k\theta )}{2k}}=-{\frac {1}{2}}\ln(2\sin \theta ),0<\theta <\pi } {\displaystyle \sum _{k=1}^{\infty }{\frac {\cos(2k\theta )}{2k}}=-{\frac {1}{2}}\ln(2\sin \theta ),0<\theta <\pi }
  • ∑ k = 1 ∞ sin ⁡ ( 2 k θ ) 2 k = π − 2 θ 4 , 0 < θ < π {\displaystyle \sum _{k=1}^{\infty }{\frac {\sin(2k\theta )}{2k}}={\frac {\pi -2\theta }{4}},0<\theta <\pi } {\displaystyle \sum _{k=1}^{\infty }{\frac {\sin(2k\theta )}{2k}}={\frac {\pi -2\theta }{4}},0<\theta <\pi }
  • ∑ k = 0 ∞ cos ⁡ [ ( 2 k + 1 ) θ ] 2 k + 1 = 1 2 ln ⁡ ( cot ⁡ θ 2 ) , 0 < θ < π {\displaystyle \sum _{k=0}^{\infty }{\frac {\cos[(2k+1)\theta ]}{2k+1}}={\frac {1}{2}}\ln \left(\cot {\frac {\theta }{2}}\right),0<\theta <\pi } {\displaystyle \sum _{k=0}^{\infty }{\frac {\cos[(2k+1)\theta ]}{2k+1}}={\frac {1}{2}}\ln \left(\cot {\frac {\theta }{2}}\right),0<\theta <\pi }
  • ∑ k = 0 ∞ sin ⁡ [ ( 2 k + 1 ) θ ] 2 k + 1 = π 4 , 0 < θ < π {\displaystyle \sum _{k=0}^{\infty }{\frac {\sin[(2k+1)\theta ]}{2k+1}}={\frac {\pi }{4}},0<\theta <\pi } {\displaystyle \sum _{k=0}^{\infty }{\frac {\sin[(2k+1)\theta ]}{2k+1}}={\frac {\pi }{4}},0<\theta <\pi },[4]
  • ∑ k = 1 ∞ sin ⁡ ( 2 π k x ) k = π ( 1 2 − { x } ) ,   x ∈ R {\displaystyle \sum _{k=1}^{\infty }{\frac {\sin(2\pi kx)}{k}}=\pi \left({\dfrac {1}{2}}-\{x\}\right),\ x\in \mathbb {R} } {\displaystyle \sum _{k=1}^{\infty }{\frac {\sin(2\pi kx)}{k}}=\pi \left({\dfrac {1}{2}}-\{x\}\right),\ x\in \mathbb {R} }
  • ∑ k = 1 ∞ sin ⁡ ( 2 π k x ) k 2 n − 1 = ( − 1 ) n ( 2 π ) 2 n − 1 2 ( 2 n − 1 ) ! B 2 n − 1 ( { x } ) ,   x ∈ R ,   n ∈ N {\displaystyle \sum \limits _{k=1}^{\infty }{\frac {\sin \left(2\pi kx\right)}{k^{2n-1}}}=(-1)^{n}{\frac {(2\pi )^{2n-1}}{2(2n-1)!}}B_{2n-1}(\{x\}),\ x\in \mathbb {R} ,\ n\in \mathbb {N} } {\displaystyle \sum \limits _{k=1}^{\infty }{\frac {\sin \left(2\pi kx\right)}{k^{2n-1}}}=(-1)^{n}{\frac {(2\pi )^{2n-1}}{2(2n-1)!}}B_{2n-1}(\{x\}),\ x\in \mathbb {R} ,\ n\in \mathbb {N} }
  • ∑ k = 1 ∞ cos ⁡ ( 2 π k x ) k 2 n = ( − 1 ) n − 1 ( 2 π ) 2 n 2 ( 2 n ) ! B 2 n ( { x } ) ,   x ∈ R ,   n ∈ N {\displaystyle \sum \limits _{k=1}^{\infty }{\frac {\cos \left(2\pi kx\right)}{k^{2n}}}=(-1)^{n-1}{\frac {(2\pi )^{2n}}{2(2n)!}}B_{2n}(\{x\}),\ x\in \mathbb {R} ,\ n\in \mathbb {N} } {\displaystyle \sum \limits _{k=1}^{\infty }{\frac {\cos \left(2\pi kx\right)}{k^{2n}}}=(-1)^{n-1}{\frac {(2\pi )^{2n}}{2(2n)!}}B_{2n}(\{x\}),\ x\in \mathbb {R} ,\ n\in \mathbb {N} }
  • B n ( x ) = − n ! 2 n − 1 π n ∑ k = 1 ∞ 1 k n cos ⁡ ( 2 π k x − π n 2 ) , 0 < x < 1 {\displaystyle B_{n}(x)=-{\frac {n!}{2^{n-1}\pi ^{n}}}\sum _{k=1}^{\infty }{\frac {1}{k^{n}}}\cos \left(2\pi kx-{\frac {\pi n}{2}}\right),0<x<1} {\displaystyle B_{n}(x)=-{\frac {n!}{2^{n-1}\pi ^{n}}}\sum _{k=1}^{\infty }{\frac {1}{k^{n}}}\cos \left(2\pi kx-{\frac {\pi n}{2}}\right),0<x<1}[5]
  • ∑ k = 0 n sin ⁡ ( θ + k α ) = sin ⁡ ( n + 1 ) α 2 sin ⁡ ( θ + n α 2 ) sin ⁡ α 2 {\displaystyle \sum _{k=0}^{n}\sin(\theta +k\alpha )={\frac {\sin {\frac {(n+1)\alpha }{2}}\sin(\theta +{\frac {n\alpha }{2}})}{\sin {\frac {\alpha }{2}}}}} {\displaystyle \sum _{k=0}^{n}\sin(\theta +k\alpha )={\frac {\sin {\frac {(n+1)\alpha }{2}}\sin(\theta +{\frac {n\alpha }{2}})}{\sin {\frac {\alpha }{2}}}}}
  • ∑ k = 0 n cos ⁡ ( θ + k α ) = sin ⁡ ( n + 1 ) α 2 cos ⁡ ( θ + n α 2 ) sin ⁡ α 2 {\displaystyle \sum _{k=0}^{n}\cos(\theta +k\alpha )={\frac {\sin {\frac {(n+1)\alpha }{2}}\cos(\theta +{\frac {n\alpha }{2}})}{\sin {\frac {\alpha }{2}}}}} {\displaystyle \sum _{k=0}^{n}\cos(\theta +k\alpha )={\frac {\sin {\frac {(n+1)\alpha }{2}}\cos(\theta +{\frac {n\alpha }{2}})}{\sin {\frac {\alpha }{2}}}}}
  • ∑ k = 1 n − 1 sin ⁡ π k n = cot ⁡ π 2 n {\displaystyle \sum _{k=1}^{n-1}\sin {\frac {\pi k}{n}}=\cot {\frac {\pi }{2n}}} {\displaystyle \sum _{k=1}^{n-1}\sin {\frac {\pi k}{n}}=\cot {\frac {\pi }{2n}}}
  • ∑ k = 1 n − 1 sin ⁡ 2 π k n = 0 {\displaystyle \sum _{k=1}^{n-1}\sin {\frac {2\pi k}{n}}=0} {\displaystyle \sum _{k=1}^{n-1}\sin {\frac {2\pi k}{n}}=0}
  • ∑ k = 0 n − 1 csc 2 ⁡ ( θ + π k n ) = n 2 csc 2 ⁡ ( n θ ) {\displaystyle \sum _{k=0}^{n-1}\csc ^{2}\left(\theta +{\frac {\pi k}{n}}\right)=n^{2}\csc ^{2}(n\theta )} {\displaystyle \sum _{k=0}^{n-1}\csc ^{2}\left(\theta +{\frac {\pi k}{n}}\right)=n^{2}\csc ^{2}(n\theta )}[6]
  • ∑ k = 1 n − 1 csc 2 ⁡ π k n = n 2 − 1 3 {\displaystyle \sum _{k=1}^{n-1}\csc ^{2}{\frac {\pi k}{n}}={\frac {n^{2}-1}{3}}} {\displaystyle \sum _{k=1}^{n-1}\csc ^{2}{\frac {\pi k}{n}}={\frac {n^{2}-1}{3}}}
  • ∑ k = 1 n − 1 csc 4 ⁡ π k n = n 4 + 10 n 2 − 11 45 {\displaystyle \sum _{k=1}^{n-1}\csc ^{4}{\frac {\pi k}{n}}={\frac {n^{4}+10n^{2}-11}{45}}} {\displaystyle \sum _{k=1}^{n-1}\csc ^{4}{\frac {\pi k}{n}}={\frac {n^{4}+10n^{2}-11}{45}}}

Rasyonel fonksiyonlar

[değiştir | kaynağı değiştir]
  • ∑ n = a + 1 ∞ a n 2 − a 2 = 1 2 H 2 a {\displaystyle \sum _{n=a+1}^{\infty }{\frac {a}{n^{2}-a^{2}}}={\frac {1}{2}}H_{2a}} {\displaystyle \sum _{n=a+1}^{\infty }{\frac {a}{n^{2}-a^{2}}}={\frac {1}{2}}H_{2a}}[7]
  • ∑ n = 0 ∞ 1 n 2 + a 2 = 1 + a π coth ⁡ ( a π ) 2 a 2 {\displaystyle \sum _{n=0}^{\infty }{\frac {1}{n^{2}+a^{2}}}={\frac {1+a\pi \coth(a\pi )}{2a^{2}}}} {\displaystyle \sum _{n=0}^{\infty }{\frac {1}{n^{2}+a^{2}}}={\frac {1+a\pi \coth(a\pi )}{2a^{2}}}}
  • ∑ n = 0 ∞ 1 n 4 + 4 a 4 = 1 8 a 4 + π ( sinh ⁡ ( 2 π a ) + sin ⁡ ( 2 π a ) ) 8 a 3 ( cosh ⁡ ( 2 π a ) − cos ⁡ ( 2 π a ) ) {\displaystyle \displaystyle \sum _{n=0}^{\infty }{\frac {1}{n^{4}+4a^{4}}}={\dfrac {1}{8a^{4}}}+{\dfrac {\pi (\sinh(2\pi a)+\sin(2\pi a))}{8a^{3}(\cosh(2\pi a)-\cos(2\pi a))}}} {\displaystyle \displaystyle \sum _{n=0}^{\infty }{\frac {1}{n^{4}+4a^{4}}}={\dfrac {1}{8a^{4}}}+{\dfrac {\pi (\sinh(2\pi a)+\sin(2\pi a))}{8a^{3}(\cosh(2\pi a)-\cos(2\pi a))}}}
  • n {\displaystyle n} {\displaystyle n}'nin herhangi bir rasyonel fonksiyon'unun sonsuz bir serisi, burada açıklandığı gibi kısmi kesirlere ayrıştırma[8] kullanılarak poligama fonksiyonu'nun sonlu bir serisine indirgenebilir. Bu gerçek, rasyonel fonksiyonların sonlu serilerine de uygulanabilir ve seri çok sayıda terim içerdiğinde bile sonucun sabit zamanda hesaplanmasına izin verir.

Üstel fonksiyon

[değiştir | kaynağı değiştir]
  • 1 p ∑ n = 0 p − 1 exp ⁡ ( 2 π i n 2 q p ) = e π i / 4 2 q ∑ n = 0 2 q − 1 exp ⁡ ( − π i n 2 p 2 q ) {\displaystyle \displaystyle {\dfrac {1}{\sqrt {p}}}\sum _{n=0}^{p-1}\exp \left({\frac {2\pi in^{2}q}{p}}\right)={\dfrac {e^{\pi i/4}}{\sqrt {2q}}}\sum _{n=0}^{2q-1}\exp \left(-{\frac {\pi in^{2}p}{2q}}\right)} {\displaystyle \displaystyle {\dfrac {1}{\sqrt {p}}}\sum _{n=0}^{p-1}\exp \left({\frac {2\pi in^{2}q}{p}}\right)={\dfrac {e^{\pi i/4}}{\sqrt {2q}}}\sum _{n=0}^{2q-1}\exp \left(-{\frac {\pi in^{2}p}{2q}}\right)}(bkz. Landsberg–Schaar bağıntısı)
  • ∑ n = − ∞ ∞ e − π n 2 = π 4 Γ ( 3 4 ) {\displaystyle \displaystyle \sum _{n=-\infty }^{\infty }e^{-\pi n^{2}}={\frac {\sqrt[{4}]{\pi }}{\Gamma \left({\frac {3}{4}}\right)}}} {\displaystyle \displaystyle \sum _{n=-\infty }^{\infty }e^{-\pi n^{2}}={\frac {\sqrt[{4}]{\pi }}{\Gamma \left({\frac {3}{4}}\right)}}}

Nümerik seriler

[değiştir | kaynağı değiştir]

Bu numerik seriler, yukarıda listelenen serilerdeki sayılar eklenerek bulunabilir.

Alternatif harmonik seriler

[değiştir | kaynağı değiştir]
  • ∑ k = 1 ∞ ( − 1 ) k + 1 k = 1 1 − 1 2 + 1 3 − 1 4 + ⋯ = ln ⁡ 2 {\displaystyle \sum _{k=1}^{\infty }{\frac {(-1)^{k+1}}{k}}={\frac {1}{1}}-{\frac {1}{2}}+{\frac {1}{3}}-{\frac {1}{4}}+\cdots =\ln 2} {\displaystyle \sum _{k=1}^{\infty }{\frac {(-1)^{k+1}}{k}}={\frac {1}{1}}-{\frac {1}{2}}+{\frac {1}{3}}-{\frac {1}{4}}+\cdots =\ln 2}
  • ∑ k = 1 ∞ ( − 1 ) k + 1 2 k − 1 = 1 1 − 1 3 + 1 5 − 1 7 + 1 9 − ⋯ = π 4 {\displaystyle \sum _{k=1}^{\infty }{\frac {(-1)^{k+1}}{2k-1}}={\frac {1}{1}}-{\frac {1}{3}}+{\frac {1}{5}}-{\frac {1}{7}}+{\frac {1}{9}}-\cdots ={\frac {\pi }{4}}} {\displaystyle \sum _{k=1}^{\infty }{\frac {(-1)^{k+1}}{2k-1}}={\frac {1}{1}}-{\frac {1}{3}}+{\frac {1}{5}}-{\frac {1}{7}}+{\frac {1}{9}}-\cdots ={\frac {\pi }{4}}}

Faktöriyellerin tersinin toplamı

[değiştir | kaynağı değiştir]
  • ∑ k = 0 ∞ 1 k ! = 1 0 ! + 1 1 ! + 1 2 ! + 1 3 ! + 1 4 ! + ⋯ = e {\displaystyle \sum _{k=0}^{\infty }{\frac {1}{k!}}={\frac {1}{0!}}+{\frac {1}{1!}}+{\frac {1}{2!}}+{\frac {1}{3!}}+{\frac {1}{4!}}+\cdots =e} {\displaystyle \sum _{k=0}^{\infty }{\frac {1}{k!}}={\frac {1}{0!}}+{\frac {1}{1!}}+{\frac {1}{2!}}+{\frac {1}{3!}}+{\frac {1}{4!}}+\cdots =e}
  • ∑ k = 0 ∞ 1 ( 2 k ) ! = 1 0 ! + 1 2 ! + 1 4 ! + 1 6 ! + 1 8 ! + ⋯ = 1 2 ( e + 1 e ) = cosh ⁡ 1 {\displaystyle \sum _{k=0}^{\infty }{\frac {1}{(2k)!}}={\frac {1}{0!}}+{\frac {1}{2!}}+{\frac {1}{4!}}+{\frac {1}{6!}}+{\frac {1}{8!}}+\cdots ={\frac {1}{2}}\left(e+{\frac {1}{e}}\right)=\cosh 1} {\displaystyle \sum _{k=0}^{\infty }{\frac {1}{(2k)!}}={\frac {1}{0!}}+{\frac {1}{2!}}+{\frac {1}{4!}}+{\frac {1}{6!}}+{\frac {1}{8!}}+\cdots ={\frac {1}{2}}\left(e+{\frac {1}{e}}\right)=\cosh 1}
  • ∑ k = 0 ∞ 1 ( 3 k ) ! = 1 0 ! + 1 3 ! + 1 6 ! + 1 9 ! + 1 12 ! + ⋯ = 1 3 ( e + 2 e cos ⁡ 3 2 ) {\displaystyle \sum _{k=0}^{\infty }{\frac {1}{(3k)!}}={\frac {1}{0!}}+{\frac {1}{3!}}+{\frac {1}{6!}}+{\frac {1}{9!}}+{\frac {1}{12!}}+\cdots ={\frac {1}{3}}\left(e+{\frac {2}{\sqrt {e}}}\cos {\frac {\sqrt {3}}{2}}\right)} {\displaystyle \sum _{k=0}^{\infty }{\frac {1}{(3k)!}}={\frac {1}{0!}}+{\frac {1}{3!}}+{\frac {1}{6!}}+{\frac {1}{9!}}+{\frac {1}{12!}}+\cdots ={\frac {1}{3}}\left(e+{\frac {2}{\sqrt {e}}}\cos {\frac {\sqrt {3}}{2}}\right)}
  • ∑ k = 0 ∞ 1 ( 4 k ) ! = 1 0 ! + 1 4 ! + 1 8 ! + 1 12 ! + 1 16 ! + ⋯ = 1 2 ( cos ⁡ 1 + cosh ⁡ 1 ) {\displaystyle \sum _{k=0}^{\infty }{\frac {1}{(4k)!}}={\frac {1}{0!}}+{\frac {1}{4!}}+{\frac {1}{8!}}+{\frac {1}{12!}}+{\frac {1}{16!}}+\cdots ={\frac {1}{2}}\left(\cos 1+\cosh 1\right)} {\displaystyle \sum _{k=0}^{\infty }{\frac {1}{(4k)!}}={\frac {1}{0!}}+{\frac {1}{4!}}+{\frac {1}{8!}}+{\frac {1}{12!}}+{\frac {1}{16!}}+\cdots ={\frac {1}{2}}\left(\cos 1+\cosh 1\right)}

Trigonometri ve π

[değiştir | kaynağı değiştir]
  • ∑ k = 0 ∞ ( − 1 ) k ( 2 k + 1 ) ! = 1 1 ! − 1 3 ! + 1 5 ! − 1 7 ! + 1 9 ! + ⋯ = sin ⁡ 1 {\displaystyle \sum _{k=0}^{\infty }{\frac {(-1)^{k}}{(2k+1)!}}={\frac {1}{1!}}-{\frac {1}{3!}}+{\frac {1}{5!}}-{\frac {1}{7!}}+{\frac {1}{9!}}+\cdots =\sin 1} {\displaystyle \sum _{k=0}^{\infty }{\frac {(-1)^{k}}{(2k+1)!}}={\frac {1}{1!}}-{\frac {1}{3!}}+{\frac {1}{5!}}-{\frac {1}{7!}}+{\frac {1}{9!}}+\cdots =\sin 1}
  • ∑ k = 0 ∞ ( − 1 ) k ( 2 k ) ! = 1 0 ! − 1 2 ! + 1 4 ! − 1 6 ! + 1 8 ! + ⋯ = cos ⁡ 1 {\displaystyle \sum _{k=0}^{\infty }{\frac {(-1)^{k}}{(2k)!}}={\frac {1}{0!}}-{\frac {1}{2!}}+{\frac {1}{4!}}-{\frac {1}{6!}}+{\frac {1}{8!}}+\cdots =\cos 1} {\displaystyle \sum _{k=0}^{\infty }{\frac {(-1)^{k}}{(2k)!}}={\frac {1}{0!}}-{\frac {1}{2!}}+{\frac {1}{4!}}-{\frac {1}{6!}}+{\frac {1}{8!}}+\cdots =\cos 1}
  • ∑ k = 1 ∞ 1 k 2 + 1 = 1 2 + 1 5 + 1 10 + 1 17 + ⋯ = 1 2 ( π coth ⁡ π − 1 ) {\displaystyle \sum _{k=1}^{\infty }{\frac {1}{k^{2}+1}}={\frac {1}{2}}+{\frac {1}{5}}+{\frac {1}{10}}+{\frac {1}{17}}+\cdots ={\frac {1}{2}}(\pi \coth \pi -1)} {\displaystyle \sum _{k=1}^{\infty }{\frac {1}{k^{2}+1}}={\frac {1}{2}}+{\frac {1}{5}}+{\frac {1}{10}}+{\frac {1}{17}}+\cdots ={\frac {1}{2}}(\pi \coth \pi -1)}
  • ∑ k = 1 ∞ ( − 1 ) k k 2 + 1 = − 1 2 + 1 5 − 1 10 + 1 17 + ⋯ = 1 2 ( π csch ⁡ π − 1 ) {\displaystyle \sum _{k=1}^{\infty }{\frac {(-1)^{k}}{k^{2}+1}}=-{\frac {1}{2}}+{\frac {1}{5}}-{\frac {1}{10}}+{\frac {1}{17}}+\cdots ={\frac {1}{2}}(\pi \operatorname {csch} \pi -1)} {\displaystyle \sum _{k=1}^{\infty }{\frac {(-1)^{k}}{k^{2}+1}}=-{\frac {1}{2}}+{\frac {1}{5}}-{\frac {1}{10}}+{\frac {1}{17}}+\cdots ={\frac {1}{2}}(\pi \operatorname {csch} \pi -1)}
  • 3 + 4 2 × 3 × 4 − 4 4 × 5 × 6 + 4 6 × 7 × 8 − 4 8 × 9 × 10 + ⋯ = π {\displaystyle 3+{\frac {4}{2\times 3\times 4}}-{\frac {4}{4\times 5\times 6}}+{\frac {4}{6\times 7\times 8}}-{\frac {4}{8\times 9\times 10}}+\cdots =\pi } {\displaystyle 3+{\frac {4}{2\times 3\times 4}}-{\frac {4}{4\times 5\times 6}}+{\frac {4}{6\times 7\times 8}}-{\frac {4}{8\times 9\times 10}}+\cdots =\pi }

Üçgensel sayıların tersi

[değiştir | kaynağı değiştir]
  • ∑ k = 1 ∞ 1 T k = 1 1 + 1 3 + 1 6 + 1 10 + 1 15 + ⋯ = 2 {\displaystyle \sum _{k=1}^{\infty }{\frac {1}{T_{k}}}={\frac {1}{1}}+{\frac {1}{3}}+{\frac {1}{6}}+{\frac {1}{10}}+{\frac {1}{15}}+\cdots =2} {\displaystyle \sum _{k=1}^{\infty }{\frac {1}{T_{k}}}={\frac {1}{1}}+{\frac {1}{3}}+{\frac {1}{6}}+{\frac {1}{10}}+{\frac {1}{15}}+\cdots =2}

Burada; T n = ∑ k = 1 n k {\displaystyle T_{n}=\sum _{k=1}^{n}k} {\displaystyle T_{n}=\sum _{k=1}^{n}k}

Dörtyüzlüsel sayıların tersi

[değiştir | kaynağı değiştir]
  • ∑ k = 1 ∞ 1 T e k = 1 1 + 1 4 + 1 10 + 1 20 + 1 35 + ⋯ = 3 2 {\displaystyle \sum _{k=1}^{\infty }{\frac {1}{Te_{k}}}={\frac {1}{1}}+{\frac {1}{4}}+{\frac {1}{10}}+{\frac {1}{20}}+{\frac {1}{35}}+\cdots ={\frac {3}{2}}} {\displaystyle \sum _{k=1}^{\infty }{\frac {1}{Te_{k}}}={\frac {1}{1}}+{\frac {1}{4}}+{\frac {1}{10}}+{\frac {1}{20}}+{\frac {1}{35}}+\cdots ={\frac {3}{2}}}

Burada; T e n = ∑ k = 1 n T k {\displaystyle Te_{n}=\sum _{k=1}^{n}T_{k}} {\displaystyle Te_{n}=\sum _{k=1}^{n}T_{k}}

Üstel ve logaritmalar

[değiştir | kaynağı değiştir]
  • ∑ k = 0 ∞ 1 ( 2 k + 1 ) ( 2 k + 2 ) = 1 1 × 2 + 1 3 × 4 + 1 5 × 6 + 1 7 × 8 + 1 9 × 10 + ⋯ = ln ⁡ 2 {\displaystyle \sum _{k=0}^{\infty }{\frac {1}{(2k+1)(2k+2)}}={\frac {1}{1\times 2}}+{\frac {1}{3\times 4}}+{\frac {1}{5\times 6}}+{\frac {1}{7\times 8}}+{\frac {1}{9\times 10}}+\cdots =\ln 2} {\displaystyle \sum _{k=0}^{\infty }{\frac {1}{(2k+1)(2k+2)}}={\frac {1}{1\times 2}}+{\frac {1}{3\times 4}}+{\frac {1}{5\times 6}}+{\frac {1}{7\times 8}}+{\frac {1}{9\times 10}}+\cdots =\ln 2}
  • ∑ k = 1 ∞ 1 2 k k = 1 2 + 1 8 + 1 24 + 1 64 + 1 160 + ⋯ = ln ⁡ 2 {\displaystyle \sum _{k=1}^{\infty }{\frac {1}{2^{k}k}}={\frac {1}{2}}+{\frac {1}{8}}+{\frac {1}{24}}+{\frac {1}{64}}+{\frac {1}{160}}+\cdots =\ln 2} {\displaystyle \sum _{k=1}^{\infty }{\frac {1}{2^{k}k}}={\frac {1}{2}}+{\frac {1}{8}}+{\frac {1}{24}}+{\frac {1}{64}}+{\frac {1}{160}}+\cdots =\ln 2}
  • ∑ k = 1 ∞ ( − 1 ) k + 1 2 k k + ∑ k = 1 ∞ ( − 1 ) k + 1 3 k k = ( 1 2 + 1 3 ) − ( 1 8 + 1 18 ) + ( 1 24 + 1 81 ) − ( 1 64 + 1 324 ) + ⋯ = ln ⁡ 2 {\displaystyle \sum _{k=1}^{\infty }{\frac {(-1)^{k+1}}{2^{k}k}}+\sum _{k=1}^{\infty }{\frac {(-1)^{k+1}}{3^{k}k}}={\Bigg (}{\frac {1}{2}}+{\frac {1}{3}}{\Bigg )}-{\Bigg (}{\frac {1}{8}}+{\frac {1}{18}}{\Bigg )}+{\Bigg (}{\frac {1}{24}}+{\frac {1}{81}}{\Bigg )}-{\Bigg (}{\frac {1}{64}}+{\frac {1}{324}}{\Bigg )}+\cdots =\ln 2} {\displaystyle \sum _{k=1}^{\infty }{\frac {(-1)^{k+1}}{2^{k}k}}+\sum _{k=1}^{\infty }{\frac {(-1)^{k+1}}{3^{k}k}}={\Bigg (}{\frac {1}{2}}+{\frac {1}{3}}{\Bigg )}-{\Bigg (}{\frac {1}{8}}+{\frac {1}{18}}{\Bigg )}+{\Bigg (}{\frac {1}{24}}+{\frac {1}{81}}{\Bigg )}-{\Bigg (}{\frac {1}{64}}+{\frac {1}{324}}{\Bigg )}+\cdots =\ln 2}
  • ∑ k = 1 ∞ 1 3 k k + ∑ k = 1 ∞ 1 4 k k = ( 1 3 + 1 4 ) + ( 1 18 + 1 32 ) + ( 1 81 + 1 192 ) + ( 1 324 + 1 1024 ) + ⋯ = ln ⁡ 2 {\displaystyle \sum _{k=1}^{\infty }{\frac {1}{3^{k}k}}+\sum _{k=1}^{\infty }{\frac {1}{4^{k}k}}={\Bigg (}{\frac {1}{3}}+{\frac {1}{4}}{\Bigg )}+{\Bigg (}{\frac {1}{18}}+{\frac {1}{32}}{\Bigg )}+{\Bigg (}{\frac {1}{81}}+{\frac {1}{192}}{\Bigg )}+{\Bigg (}{\frac {1}{324}}+{\frac {1}{1024}}{\Bigg )}+\cdots =\ln 2} {\displaystyle \sum _{k=1}^{\infty }{\frac {1}{3^{k}k}}+\sum _{k=1}^{\infty }{\frac {1}{4^{k}k}}={\Bigg (}{\frac {1}{3}}+{\frac {1}{4}}{\Bigg )}+{\Bigg (}{\frac {1}{18}}+{\frac {1}{32}}{\Bigg )}+{\Bigg (}{\frac {1}{81}}+{\frac {1}{192}}{\Bigg )}+{\Bigg (}{\frac {1}{324}}+{\frac {1}{1024}}{\Bigg )}+\cdots =\ln 2}

Ayrıca bakınız

[değiştir | kaynağı değiştir]
  • Seri (matematik)
  • İntegraller listesi
  • Toplam § Özdeşlikler
  • Taylor serisi
  • Binom teoremi
  • Gregory serileri
  • On-Line Encyclopedia of Integer Sequences

Notlar

[değiştir | kaynağı değiştir]
  1. ^ Weisstein, Eric W. "Haversine". MathWorld. Wolfram Research, Inc. 10 Mart 2005 tarihinde kaynağından arşivlendi. Erişim tarihi: 6 Kasım 2015. 
  2. ^ a b c d Wilf, Herbert R. (1994). generatingfunctionology (PDF). Academic Press, Inc. 27 Nisan 2021 tarihinde kaynağından arşivlendi (PDF). Erişim tarihi: 13 Temmuz 2023. 
  3. ^ a b c d "Theoretical computer science cheat sheet" (PDF). 10 Haziran 2003 tarihinde kaynağından (PDF) arşivlendi. 
  4. ^ f ( x ) = π 4 {\displaystyle f(x)={\frac {\pi }{4}}} {\displaystyle f(x)={\frac {\pi }{4}}} fonksiyonun Fourier açılımını 0 < x < π {\displaystyle 0<x<\pi } {\displaystyle 0<x<\pi } aralığında hesaplayın:
    • π 4 = ∑ n = 0 ∞ c n sin ⁡ [ n x ] + d n cos ⁡ [ n x ] {\displaystyle {\frac {\pi }{4}}=\sum _{n=0}^{\infty }c_{n}\sin[nx]+d_{n}\cos[nx]} {\displaystyle {\frac {\pi }{4}}=\sum _{n=0}^{\infty }c_{n}\sin[nx]+d_{n}\cos[nx]}
    ⇒ { c n = { 1 n ( n  tek ) 0 ( n  çift ) d n = 0 ( ∀ n ) {\displaystyle \Rightarrow {\begin{cases}c_{n}={\begin{cases}{\frac {1}{n}}\quad (n{\text{ tek}})\\0\quad (n{\text{ çift}})\end{cases}}\\d_{n}=0\quad (\forall n)\end{cases}}} {\displaystyle \Rightarrow {\begin{cases}c_{n}={\begin{cases}{\frac {1}{n}}\quad (n{\text{ tek}})\\0\quad (n{\text{ çift}})\end{cases}}\\d_{n}=0\quad (\forall n)\end{cases}}}
  5. ^ "Bernoulli polynomials: Series representations (subsection 06/02)". Wolfram Research. 28 Eylül 2011 tarihinde kaynağından arşivlendi. Erişim tarihi: 2 Haziran 2011. 
  6. ^ Hofbauer, Josef. "A simple proof of 1 + 1/22 + 1/32 + ··· = π2/6 and related identities" (PDF). 20 Temmuz 2007 tarihinde kaynağından (PDF) arşivlendi. Erişim tarihi: 2 Haziran 2011. 
  7. ^ Sondow, Jonathan; Weisstein, Eric W. "Riemann Zeta Function (eq. 52)". MathWorld—A Wolfram Web Resource. 17 Ağustos 2000 tarihinde kaynağından arşivlendi. 
  8. ^ Abramowitz, Milton; Stegun, Irene (1964). "6.4 Polygamma functions". Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. s. 260. ISBN 0-486-61272-4. 

Kaynakça

[değiştir | kaynağı değiştir]
  • İntegraller listesi içeren birçok kitapta, seriler listesi de vardır.
  • π 4 = ∑ k = 0 ∞ ( − 1 ) k 2 k + 1 {\displaystyle {\frac {\pi }{4}}=\sum _{k=0}^{\infty }{\frac {\left(-1\right)^{k}}{2k+1}}} {\displaystyle {\frac {\pi }{4}}=\sum _{k=0}^{\infty }{\frac {\left(-1\right)^{k}}{2k+1}}}
"https://tr.wikipedia.org/w/index.php?title=Matematiksel_seriler_listesi&oldid=33464464" sayfasından alınmıştır
Kategoriler:
  • Matematiksel seriler
  • Matematik listeleri
  • Matematiksel tablolar
Gizli kategori:
  • Kırmızı bağlantıya sahip ana madde şablonu içeren maddeler
  • Sayfa en son 16.57, 8 Temmuz 2024 tarihinde değiştirildi.
  • Metin Creative Commons Atıf-AynıLisanslaPaylaş Lisansı altındadır ve ek koşullar uygulanabilir. Bu siteyi kullanarak Kullanım Şartlarını ve Gizlilik Politikasını kabul etmiş olursunuz.
    Vikipedi® (ve Wikipedia®) kâr amacı gütmeyen kuruluş olan Wikimedia Foundation, Inc. tescilli markasıdır.
  • Gizlilik politikası
  • Vikipedi hakkında
  • Sorumluluk reddi
  • Davranış Kuralları
  • Geliştiriciler
  • İstatistikler
  • Çerez politikası
  • Mobil görünüm
  • Wikimedia Foundation
  • Powered by MediaWiki
Matematiksel seriler listesi
Konu ekle