Otoregresif hareketli ortalamalar modeli - Vikipedi
İçeriğe atla
Ana menü
Gezinti
  • Anasayfa
  • Hakkımızda
  • İçindekiler
  • Rastgele madde
  • Seçkin içerik
  • Yakınımdakiler
Katılım
  • Deneme tahtası
  • Köy çeşmesi
  • Son değişiklikler
  • Dosya yükle
  • Topluluk portalı
  • Wikimedia dükkânı
  • Yardım
  • Özel sayfalar
Vikipedi Özgür Ansiklopedi
Ara
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç

İçindekiler

  • Giriş
  • 1 Otoregresif, AR(p), model
  • 2 Örnek: AR(1) süreci
  • 3 AR parametrelerinin hesaplanması
  • 4 Hareketli ortalamalar. MA(q), modeli
  • 5 Otoregresif hareketli ortalamalar, ARMA(p,q), modeli
  • 6 Modelin tahmini
  • 7 Notlar
  • 8 Dış bağlantılar

Otoregresif hareketli ortalamalar modeli

  • العربية
  • Català
  • Deutsch
  • English
  • Español
  • فارسی
  • Français
  • Galego
  • İtaliano
  • 日本語
  • 한국어
  • Português
  • Русский
  • Sunda
  • Українська
  • Tiếng Việt
  • 中文
Bağlantıları değiştir
  • Madde
  • Tartışma
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Araçlar
Eylemler
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Genel
  • Sayfaya bağlantılar
  • İlgili değişiklikler
  • Kalıcı bağlantı
  • Sayfa bilgisi
  • Bu sayfayı kaynak göster
  • Kısaltılmış URL'yi al
  • Karekodu indir
Yazdır/dışa aktar
  • Bir kitap oluştur
  • PDF olarak indir
  • Basılmaya uygun görünüm
Diğer projelerde
  • Vikiveri ögesi
Görünüm
Vikipedi, özgür ansiklopedi

Otoregresif hareketli ortalamalar modelleri (İngilizce:"autoregressive moving averages (ARMA) models"), istatistik biliminde George Box ve Gwilym Jenkins'e ithafen Box-Jenkins modelleri olarak da bilinen zaman serisi kestirimi ve öngörme yöntemi olup eşit zaman aralıklarında gözlenen zaman serisi verilerinde uygulanır.

Xt şeklinde bir zaman serisi verisi (datası) verildiğinde, ARMA modeli, serinin gelecek dönemlerdeki değerlerini anlamak ve hatta öngörmek için kullanılır. Model iki kısımdan oluşur. Bunlardan birisi otoregresif kısım (AR), diğeri ise hareketli ortalamalar kısmıdır. Model, genellikle p otoregresif kısmın derecesi, q ise hareketli ortalama kısmının derecesi olmak üzere ARMA(p,q) modeli şeklinde gösterilir.

Otoregresif, AR(p), model

[değiştir | kaynağı değiştir]

AR(p) ifadesi p. dereceden otoregresif bir modeli tanımlar. AR(p) modeli şöyle gösterilir:

X t = c + ∑ i = 1 p ϕ i X t − i + ϵ t . {\displaystyle X_{t}=c+\sum _{i=1}^{p}\phi _{i}X_{t-i}+\epsilon _{t}.\,} {\displaystyle X_{t}=c+\sum _{i=1}^{p}\phi _{i}X_{t-i}+\epsilon _{t}.\,}

ϕ 1 , … ϕ p {\displaystyle \phi _{1},\ldots \phi _{p}} {\displaystyle \phi _{1},\ldots \phi _{p}}, modelin parametrelerini; c {\displaystyle c} {\displaystyle c}, sabit terimi; ϵ t {\displaystyle \epsilon _{t}} {\displaystyle \epsilon _{t}} ise hata terimini simgeler. Pek çok yazar tarafından basitleştirme maksadıyla sabit terim ihmal edilir. Modelin durağan olması için parametreler üzerinde kısıtlamaya gidilmelidir. Örneğin |φ1| > 1 durumunun geçerli olduğu bir AR(1) modeli durağan değildir.

Örnek: AR(1) süreci

[değiştir | kaynağı değiştir]

AR(1) süreci:

X t = c + ϕ X t − 1 + ϵ t , {\displaystyle X_{t}=c+\phi X_{t-1}+\epsilon _{t},\,} {\displaystyle X_{t}=c+\phi X_{t-1}+\epsilon _{t},\,}

şeklinde tanımlanır. ϵ t {\displaystyle \epsilon _{t}} {\displaystyle \epsilon _{t}}, beyaz gürültülü ve 0 ortalamaya sahip σ 2 {\displaystyle \sigma ^{2}} {\displaystyle \sigma ^{2}} varyanslı bir süreçtir. Eğer, | ϕ | < 1 {\displaystyle |\phi |<1} {\displaystyle |\phi |<1} sağlanırsa süreç kovaryans durağandır. Eğer ϕ = 1 {\displaystyle \phi =1} {\displaystyle \phi =1} sağlanıyorsa süreç birim kök içermektedir ve durağan olduğu söylenemez. ϕ = 1 {\displaystyle \phi =1} {\displaystyle \phi =1} durumu aynı zamanda rassal yürüyüş olarak da bilinen özel bir durumdur. Bu özel durumda X t {\displaystyle X_{t}} {\displaystyle X_{t}} için "beklenen değeri" hesaplamak mümkün değildir.

AR parametrelerinin hesaplanması

[değiştir | kaynağı değiştir]
X t = ∑ i = 1 p ϕ i X t − i + ϵ t . {\displaystyle X_{t}=\sum _{i=1}^{p}\phi _{i}X_{t-i}+\epsilon _{t}.\,} {\displaystyle X_{t}=\sum _{i=1}^{p}\phi _{i}X_{t-i}+\epsilon _{t}.\,}

denklemi ile verilen bir AR(p) modeli ϕ i {\displaystyle \phi _{i}} {\displaystyle \phi _{i}} parametrelerine dayanır. Bu parametreler Yule-Walker denklemleri ile hesaplanır:

γ m = ∑ k = 1 p ϕ k γ m − k + σ ϵ 2 δ m {\displaystyle \gamma _{m}=\sum _{k=1}^{p}\phi _{k}\gamma _{m-k}+\sigma _{\epsilon }^{2}\delta _{m}} {\displaystyle \gamma _{m}=\sum _{k=1}^{p}\phi _{k}\gamma _{m-k}+\sigma _{\epsilon }^{2}\delta _{m}}

m = 0...p olup sonuçta p+1 tane denklem ortaya çıkar. γ m {\displaystyle \gamma _{m}} {\displaystyle \gamma _{m}}, X'in otokorelasyon fonksiyonu olup σ ϵ {\displaystyle \sigma _{\epsilon }} {\displaystyle \sigma _{\epsilon }} girdi gürültü sürecinin standart hatasıdır. δm ise Kronecker Delta Fonksiyonu'nu gösterir.

Denklemin son kısmı yalnızca m=0 olma durumunda sıfırdan farklı olacağından, denklem m>0 koşulunu sağlayan bir matris şeklinde ifade edilerek çözülür.

[ γ 1 γ 2 γ 3 . . . ] = [ γ 0 γ − 1 γ − 2 . . . γ 1 γ 0 γ − 1 . . . γ 2 γ 1 γ 0 . . . . . . . . . . . . . . . ] [ ϕ 1 ϕ 2 ϕ 3 . . . ] {\displaystyle {\begin{bmatrix}\gamma _{1}\\\gamma _{2}\\\gamma _{3}\\...\\\end{bmatrix}}={\begin{bmatrix}\gamma _{0}&\gamma _{-1}&\gamma _{-2}&...\\\gamma _{1}&\gamma _{0}&\gamma _{-1}&...\\\gamma _{2}&\gamma _{1}&\gamma _{0}&...\\...&...&...&...\\\end{bmatrix}}{\begin{bmatrix}\phi _{1}\\\phi _{2}\\\phi _{3}\\...\\\end{bmatrix}}} {\displaystyle {\begin{bmatrix}\gamma _{1}\\\gamma _{2}\\\gamma _{3}\\...\\\end{bmatrix}}={\begin{bmatrix}\gamma _{0}&\gamma _{-1}&\gamma _{-2}&...\\\gamma _{1}&\gamma _{0}&\gamma _{-1}&...\\\gamma _{2}&\gamma _{1}&\gamma _{0}&...\\...&...&...&...\\\end{bmatrix}}{\begin{bmatrix}\phi _{1}\\\phi _{2}\\\phi _{3}\\...\\\end{bmatrix}}}

m=0 için bütün ϕ {\displaystyle \phi } {\displaystyle \phi }ler elde edildiğinde.

γ 0 = ∑ k = 1 p ϕ k γ − k + σ ϵ 2 {\displaystyle \gamma _{0}=\sum _{k=1}^{p}\phi _{k}\gamma _{-k}+\sigma _{\epsilon }^{2}} {\displaystyle \gamma _{0}=\sum _{k=1}^{p}\phi _{k}\gamma _{-k}+\sigma _{\epsilon }^{2}}

ifadesi ortaya çıkar ki bu σ ϵ 2 {\displaystyle \sigma _{\epsilon }^{2}} {\displaystyle \sigma _{\epsilon }^{2}} değerini bulmamızı sağlar.

Hareketli ortalamalar. MA(q), modeli

[değiştir | kaynağı değiştir]

MA(q) ifadesi, q. dereceden bir hareketli ortalamalar modelini ifade eder

X t = ε t + ∑ i = 1 q θ i ε t − i {\displaystyle X_{t}=\varepsilon _{t}+\sum _{i=1}^{q}\theta _{i}\varepsilon _{t-i}\,} {\displaystyle X_{t}=\varepsilon _{t}+\sum _{i=1}^{q}\theta _{i}\varepsilon _{t-i}\,}

θ1, ..., θq modelin parametreleridir εt, εt-1,... modelin hata terimleridir. Bundan açıktır ki "hareketli ortalamalar" modelinde belirli bir zaman noktasındaki bir zaman serisi değişkeninin değeri (yani t'de Xt değeri) q tane daha önceki her bir zaman noktasıda yapılan hataların (yani her t zaman noktası için i gecikmeli ε<t-i hatasının) ağırlıklı olarak bileştirilmesi ile açıklanmaktadır.

Otoregresif hareketli ortalamalar, ARMA(p,q), modeli

[değiştir | kaynağı değiştir]

Bu model, AR(p) and MA(q) modellerinin bir birleşimidir,

X t = ε t + ∑ i = 1 p ϕ i X t − i + ∑ i = 1 q θ i ε t − i . {\displaystyle X_{t}=\varepsilon _{t}+\sum _{i=1}^{p}\phi _{i}X_{t-i}+\sum _{i=1}^{q}\theta _{i}\varepsilon _{t-i}.\,} {\displaystyle X_{t}=\varepsilon _{t}+\sum _{i=1}^{p}\phi _{i}X_{t-i}+\sum _{i=1}^{q}\theta _{i}\varepsilon _{t-i}.\,}

şeklinde gösterilir.

Modelin tahmini

[değiştir | kaynağı değiştir]

Model sadece AR(p) ile kurulursa "Yule-Walker denklemleri" çözüm için yeterli olacaktır ARMA(p, q) şeklinde bir model kurulduğunda ise önce p ve q değerlerinin kaç olacağına karar verilir, yâni kaç adet gecikmeli değişken kullanılacağı önem kazanır. Genelde p ve q'nun küçük seçilmesi tavsiye edilir. p ve q sayıları seçildikten sonra ise model en küçük kareler yöntemi ile tahmin edilebilir.

Notlar

[değiştir | kaynağı değiştir]

Dış bağlantılar

[değiştir | kaynağı değiştir]
  • Box, George Box, Gwilym M. Jenkins, Gregory C. Reinsel ve Lon-Mu Liu (2009), Time Series Analysis, 4.ed.. Pearson Education, ISBN 0-13-147142-2 (İngilizce)
  • Mills, Terence C. ve Raphael N. Markellos (2008) The Econometric Modelling of Financial Time Series 3.ed. Cambridge:Cambridge University Press. ISBN 0-521-71009-X (İngilizce)
"https://tr.wikipedia.org/w/index.php?title=Otoregresif_hareketli_ortalamalar_modeli&oldid=36500959" sayfasından alınmıştır
Kategoriler:
  • Zaman serisi analizi
  • Gürültü
  • Otokorelasyon
Gizli kategori:
  • ISBN sihirli bağlantısını kullanan sayfalar
  • Sayfa en son 20.49, 9 Aralık 2025 tarihinde değiştirildi.
  • Metin Creative Commons Atıf-AynıLisanslaPaylaş Lisansı altındadır ve ek koşullar uygulanabilir. Bu siteyi kullanarak Kullanım Şartlarını ve Gizlilik Politikasını kabul etmiş olursunuz.
    Vikipedi® (ve Wikipedia®) kâr amacı gütmeyen kuruluş olan Wikimedia Foundation, Inc. tescilli markasıdır.
  • Gizlilik politikası
  • Vikipedi hakkında
  • Sorumluluk reddi
  • Davranış Kuralları
  • Geliştiriciler
  • İstatistikler
  • Çerez politikası
  • Mobil görünüm
  • Wikimedia Foundation
  • Powered by MediaWiki
Otoregresif hareketli ortalamalar modeli
Konu ekle