Akışkanlar dinamiği - Vikipedi
İçeriğe atla
Ana menü
Gezinti
  • Anasayfa
  • Hakkımızda
  • İçindekiler
  • Rastgele madde
  • Seçkin içerik
  • Yakınımdakiler
Katılım
  • Deneme tahtası
  • Köy çeşmesi
  • Son değişiklikler
  • Dosya yükle
  • Topluluk portalı
  • Wikimedia dükkânı
  • Yardım
  • Özel sayfalar
Vikipedi Özgür Ansiklopedi
Ara
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç

İçindekiler

  • Giriş
  • 1 Temeller
    • 1.1 Korunum yasaları
  • 2 Ayrıca bakınız
  • 3 Kaynakça

Akışkanlar dinamiği

  • العربية
  • Asturianu
  • বাংলা
  • Bosanski
  • Català
  • کوردی
  • Deutsch
  • English
  • Esperanto
  • Español
  • Eesti
  • Euskara
  • فارسی
  • Suomi
  • Français
  • Galego
  • 客家語 / Hak-kâ-ngî
  • עברית
  • हिन्दी
  • Bahasa Indonesia
  • Ido
  • İtaliano
  • Қазақша
  • 한국어
  • Македонски
  • Монгол
  • Bahasa Melayu
  • Nederlands
  • Norsk nynorsk
  • Norsk bokmål
  • Oromoo
  • Polski
  • پښتو
  • Română
  • Srpskohrvatski / српскохрватски
  • සිංහල
  • Simple English
  • Slovenščina
  • Shqip
  • Српски / srpski
  • Svenska
  • தமிழ்
  • ไทย
  • Tagalog
  • Українська
  • اردو
  • Tiếng Việt
  • Winaray
  • 吴语
  • 中文
  • 粵語
Bağlantıları değiştir
  • Madde
  • Tartışma
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Araçlar
Eylemler
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Genel
  • Sayfaya bağlantılar
  • İlgili değişiklikler
  • Kalıcı bağlantı
  • Sayfa bilgisi
  • Bu sayfayı kaynak göster
  • Kısaltılmış URL'yi al
  • Karekodu indir
Yazdır/dışa aktar
  • Bir kitap oluştur
  • PDF olarak indir
  • Basılmaya uygun görünüm
Diğer projelerde
  • Wikimedia Commons
  • Vikiveri ögesi
Görünüm
Vikipedi, özgür ansiklopedi
(Hidrodinamik sayfasından yönlendirildi)
Başlığın diğer anlamları için Dinamik (anlam ayrımı) sayfasına bakınız.
Bu maddedeki bilgilerin doğrulanabilmesi için ek kaynaklar gerekli. Lütfen güvenilir kaynaklar ekleyerek maddenin geliştirilmesine yardımcı olun. Kaynaksız içerik itiraz konusu olabilir ve kaldırılabilir.
Kaynak ara: "Akışkanlar dinamiği" – haber · gazete · kitap · akademik · JSTOR
(Haziran 2020) (Bu şablonun nasıl ve ne zaman kaldırılması gerektiğini öğrenin)
Sürekli ortamlar mekaniği
Yasalar
  • Kütlenin korunumu
  • Momentumun korunumu
  • Enerjinin korunumu
  • Entropi eşitsizliği
Katı mekaniği
Katılar
Gerilme
Şekil değiştirme
Uyumluluk
Sonlu zorlanma
Sonsuz küçük zorlanma
Esneklik
doğrusal
Yoğrulabilirlik
Eğilme
Hooke yasası
Gereç kusur kuramı
Kırılma mekaniği
Temas mekaniği
Sürtünmeli
Akışkanlar mekaniği
Akışkanlar
Hidrostatik
Akışkanlar dinamiği
Navier-Stokes denklemleri
Bernoulli ilkesi
Batmazlık
Akmazlık
Newton tipi
Newton tipi olmayan
Arşimet prensibi
Pascal yasası
Basınç
Sıvılar
Yüzey gerilimi
Kılcallık
Gazlar
Atmosfer
Boyle yasası
Charles yasası
Gay-Lussac yasası
Birleşik gaz yasası
Plazma
Akışbilim
  • Akmazesneklik
  • Akıllı akışkanlar
    • Manyetoakışsal
    • Elektroakışsal
    • Demirsel akışkanlar
  • Akışölçüm
  • Akışölçer
Bilim insanları
  • Bernoulli
  • Boyle
  • Cauchy
  • Charles
  • Euler
  • Gay-Lussac
  • Hooke
  • Pascal
  • Newton
  • Navier
  • Stokes
  • g
  • t
  • d
Bu maddenin içeriğinin Türkçeleştirilmesi veya Türkçe dilbilgisi ve kuralları doğrultusunda düzeltilmesi gerekmektedir. Bu maddedeki yazım ve noktalama yanlışları ya da anlatım bozuklukları giderilmelidir.
(Yabancı sözcükler yerine Türkçe karşılıklarının kullanılması, karakter hatalarının düzeltilmesi, dilbilgisi hatalarının düzeltilmesi vs.) Düzenleme yapıldıktan sonra bu şablon kaldırılmalıdır.
Tipik aerodinamik gözyaşı şekli, viskoz bir ortamın soldan sağa geçtiğini varsayarak, diyagram basınç dağılımını siyah çizginin kalınlığı olarak ve sınır tabakasındaki hızı mor üçgenler olarak gösterir. Yeşil girdap jeneratörleri türbülanslı akışa geçişi hızlandırır ve arkadaki yüksek basınç bölgesinden akışın ayrılması olarak da adlandırılan geri akışı önler. Ön taraftaki yüzey mümkün olduğu kadar pürüzsüz ve hatta köpekbalığı benzeri bir deri kullanır çünkü buradaki herhangi bir türbülans hava akış enerjisini artırır. Kammback olarak bilinen sağdaki kesme aynı zamanda arkadaki yüksek basınç bölgesinden spoiler boyunca yakınsak kısma geri akışı da önler.

Fizik, fiziksel kimya ve mühendislikte akışkanlar dinamiği, akışkanların (sıvılar ve gazlar) akışını tanımlayan akışkanlar mekaniğinin bir alt disiplinidir. Aerodinamik (hareket halindeki hava ve diğer gazların incelenmesi) ve hidrodinamik (hareket halindeki sıvıların incelenmesi) dahil olmak üzere çeşitli alt disiplinleri vardır. Akışkanlar dinamiğinin, uçaklardaki kuvvetlerin ve momentlerin hesaplanması, boru hatları boyunca petrolün Kütle akış hızının belirlenmesi, hava durumu modellerinin tahmin edilmesi, uzaydaki bulutsuların anlaşılması ve fisyon silahı patlamasının modellenmesi dahil olmak üzere geniş bir uygulama yelpazesi vardır.

Akışkanlar dinamiği, akış ölçümlerinden türetilen ve pratik problemleri çözmek için kullanılan deneysel ve yarı-deneysel yasaları birleştirerek sistematik bir yapı sunar. Bir akışkanlar dinamiği probleminin çözümü, tipik olarak, akışkanın hız, basınç, yoğunluk ve sıcaklık gibi çeşitli özelliklerini uzay ve zaman fonksiyonları olarak hesaplamayı içerir.

Yirminci yüzyıldan önce, hidrodinamik akışkan dinamiği ile eş anlamlı olarak kullanılıyordu. Bu yüzden günümüzde akışkanlar dinamiğinin bazı konuları, gazlar için de uygulanabilir olmalarına rağmen hâlâ hidrodinamik ismiyle anılmaktadır.[1] Buna manyetik hidrodinamik ve hidrodinamik stabilite örnek olarak verilebilir.

Temeller

[değiştir | kaynağı değiştir]

Akışkanlar dinamiğinin kurucu aksiyomları korunum yasalarıdır. Bunlar; kütlenin korunumu, momentumun korunumu (Newton'un İkinci Hareket Kanunu) ve enerjinin korunumudur (Termodinamiğin Birinci Yasası). Bu yasalar klasik mekaniğe dayanır, kuantum mekaniğinde ve genel izafiyette modifiye edilirler. Yasaları akışkanlar mekaniğinde daha kullanışlı şekilde ifade etmek için Reynolds transport teoremi kullanılır.

Akışkanlar aslında birbiriyle çarpışan moleküllerden oluşur; ancak akışkanlar dinamiğinde akışkanların sürekli ortamda oldukları varsayılır. Buna göre akışkanların yoğunluk, basınç, sıcaklık ve hız gibi özellikleri uzayda sonsuz küçük noktalarda süreklilik içinde her zaman tanımlıdır. Böylece akışkanların ayrık moleküllerden oluştuğu ihmal edilir.

Süreklilikte olduğu varsayılabilecek kadar yoğun, ışık hızına göre düşük akış hızına sahip ve iyonize olmamış Newton tipi akışkanlar için momentum denklemleri Navier-Stokes denklemleridir. Bu denklemler, doğrusal olmayan diferansiyel denklem sistemi oluşturur ve sadeleştirilmemiş genel kapalı formda çözümü yoktur. Bu yüzden hesaplamalı akışkanlar dinamiği kullanılarak çözülürler. Denklemler, yalnızca bazı basit akışkanlar dinamiği problemlerinde sadeleştirilip kapalı formda analitik olarak çözülebilir.

Bir problemi tam olarak tanımlayabilmek için, kütle, momentum ve enerji korunum denklemlerine ek olarak, basıncı diğer termodinamik özelliklerin fonksiyonu olarak veren bir termodinamik hâl denklemi gereklidir. İdeal gaz denklemi buna örnek olarak gösterilebilir:

p basınç, ρ yoğunluk, T sıcaklık, Ru gaz sabiti ve M mol kütlesi olmak üzere

p = ρ R u T M {\displaystyle p={\frac {\rho R_{u}T}{M}}} {\displaystyle p={\frac {\rho R_{u}T}{M}}}

Korunum yasaları

[değiştir | kaynağı değiştir]

Akışkanlar dinamiği problemlerini çözmek için üç korunum yasası kullanılır. Bunlar, integral veya diferansiyel formda yazılabilir. Korunum yasaları kontrol hacmi denilen bir akış bölgesine uygulanabilir. Kontrol hacmi, uzayda akış analizi için seçilmiş ve yüzeylerinden akışın giriş/çıkış yapabildiği ayrık hacimdir.[2] Korunum yasalarının integral formülasyonu bütün olarak kontrol hacmi içindeki kütle, momentum ve enerji değişimlerini tanımlar. Korunum yasalarının diferansiyel formülasyonunda ise akış alanı boyunca art arda ve birbiri üstüne istiflenmiş sonsuz küçük kontrol hacimleri analiz edilir. Limit durumunda bu sonsuz küçük hacimler birer nokta olacağından korunum denklemleri akış içindeki her yerde geçerli bir kısmi diferansiyel denklem sistemine dönüşür.[3]

  • Kütlenin sürekliliği (kütlenin korunumu): Bir kontrol hacmi sınırları içerisindeki akışkan kütlesinin değişme hızı, kontrol hacmine giren net kütlesel debiye eşittir.[4] Bu, fiziksel olarak kontrol hacmi içinde kütlenin yokken var, varken yok edilemeyeceğini gerektirir[5] ve süreklilik denkleminin integral formuyla ifade edilebilir:
∂ ∂ t ∭ V ρ d V = − {\displaystyle {\partial \over \partial t}\iiint _{V}\rho \,dV=-\,{}} {\displaystyle {\partial  \over \partial t}\iiint _{V}\rho \,dV=-\,{}} \oiint S {\displaystyle {\scriptstyle S}} {\displaystyle {\scriptstyle S}} ρ u ⋅ d S {\displaystyle {}\,\rho \mathbf {u} \cdot d\mathbf {S} } {\displaystyle {}\,\rho \mathbf {u} \cdot d\mathbf {S} }
Yukarıda ρ {\displaystyle \rho } {\displaystyle \rho } akışkanın yoğunluğunu, u akış hız vektörünü ve t zamanı temsil etmektedir. Denklemin sol tarafı kontrol hacmi içindeki kütle değişim hızını gösterir ve kontrol hacmi üzerinde üç katlı bir integral içerir. Denklemin sağ tarafında ise denklemin yüzeyinden net kütle geçişini temsil eden bir integral vardır. Süreklilik denkleminin diferansiyel formülasyonu diverjans teoremi kullanılarak bulunabilir:
  ∂ ρ ∂ t + ∇ ⋅ ( ρ u ) = 0 {\displaystyle \ {\partial \rho \over \partial t}+\nabla \cdot (\rho \mathbf {u} )=0} {\displaystyle \ {\partial \rho  \over \partial t}+\nabla \cdot (\rho \mathbf {u} )=0}
  • Momentumun korunumu: Bu denklem, bir kontrol hacmi içindeki havanın ivme herhangi bir değişiklik hacmine hava net akışı ve hava dış kuvvetlerin etkisine bağlı olmasını gerektiren, kontrol hacmine Newton'un hareket kanunu uygular ikinci hacmi içinde. Bu denklemin integral formülasyonu olarak, burada vücut kuvvetleri, f vücut tarafından birim kütle başına vücut kuvvetini temsil edilmektedir. Böyle viskoz kuvvetler gibi yüzey kuvvetleri, nedeniyle kontrol hacmi yüzeyinde gerilimlere Fnet kuvvet ile temsil edilir.
∂ ∂ t ∭ V ρ u d V = − {\displaystyle {\frac {\partial }{\partial t}}\iiint _{\scriptstyle V}\rho \mathbf {u} \,dV=-\,{}} {\displaystyle {\frac {\partial }{\partial t}}\iiint _{\scriptstyle V}\rho \mathbf {u} \,dV=-\,{}} \oiint S {\displaystyle _{\scriptstyle S}} {\displaystyle _{\scriptstyle S}} ( ρ u ⋅ d S ) u − {\displaystyle (\rho \mathbf {u} \cdot d\mathbf {S} )\mathbf {u} -{}} {\displaystyle (\rho \mathbf {u} \cdot d\mathbf {S} )\mathbf {u} -{}} \oiint S {\displaystyle {\scriptstyle S}} {\displaystyle {\scriptstyle S}} p d S {\displaystyle {}\,p\,d\mathbf {S} } {\displaystyle {}\,p\,d\mathbf {S} } + ∭ V ρ f body d V + F surf {\displaystyle \displaystyle {}+\iiint _{\scriptstyle V}\rho \mathbf {f} _{\text{body}}\,dV+\mathbf {F} _{\text{surf}}} {\displaystyle \displaystyle {}+\iiint _{\scriptstyle V}\rho \mathbf {f} _{\text{body}}\,dV+\mathbf {F} _{\text{surf}}}
Aşağıdaki gibi momentumun korunumu denklemi diferansiyel şeklidir. Tek toplam kuvvet, F. Örneğin, F bir iç akış üzerinde etkili sürtünme ve yerçekimi kuvvetleri için bir ifade haline genişletilebilir burada, hem yüzey ve cisim kuvvetleri muhasebeleştirilmektedir.
  D u D t = F − ∇ p ρ {\displaystyle \ {D\mathbf {u} \over Dt}=\mathbf {F} -{\nabla p \over \rho }} {\displaystyle \ {D\mathbf {u}  \over Dt}=\mathbf {F} -{\nabla p \over \rho }}
Aerodinamik hava (nedeniyle iç sürtünme kuvvetlerine) kesme stresi arasındaki doğrusal bir ilişki öne süren bir Newton tipi sıvı ve sıvı gerinme oranı olarak kabul edilir. Yukarıdaki denkleme göre bir vektör denklemi: üç boyutlu akışta, üç skaler denklem şu şekilde ifade edilebilir. Sıkıştırılabilir, viskoz akış durumu için momentum denklemlerinin korunumu Navier-Stokes denklemleri denir.
  • Enerji korunumu: enerjinin bir formdan dönüştürülebilir, ancak, belirli bir kapalı bir sistem içinde, toplam enerji sabit kalır.
  ρ D h D t = D p D t + ∇ ⋅ ( k ∇ T ) + Φ {\displaystyle \ \rho {Dh \over Dt}={Dp \over Dt}+\nabla \cdot \left(k\nabla T\right)+\Phi } {\displaystyle \ \rho {Dh \over Dt}={Dp \over Dt}+\nabla \cdot \left(k\nabla T\right)+\Phi }

Ayrıca bakınız

[değiştir | kaynağı değiştir]
  • Nanoakışkan

Kaynakça

[değiştir | kaynağı değiştir]
  1. ^ Eckert, Michael (2006). The Dawn of Fluid Dynamics: A Discipline Between Science and Technology. Wiley. s. ix. ISBN 3-527-40513-5. 
  2. ^ Çengel, Yunus; Cimbala, John; Engin, Tahsin (ed.) (2015). "Bölüm 1: Giriş ve Temel Kavramlar". Akışkanlar Mekaniği Temelleri ve Uygulamaları. Palme Yayıncılık. s. 15. ISBN 978-605-355-274-1. KB1 bakım: Fazladan yazı: yazar listesi (link)
  3. ^ Çengel, Yunus; Cimbala, John; Engin, Tahsin (ed.) (2015). "Bölüm 9: Diferansiyel Akış Analizi". Akışkanlar Mekaniği Temelleri ve Uygulamaları. Palme Yayıncılık. s. 438. ISBN 978-605-355-274-1. KB1 bakım: Fazladan yazı: yazar listesi (link)
  4. ^ Çengel, Yunus; Cimbala, John; Engin, Tahsin (ed.) (2015). "Bölüm 5: Bernoulli ve Enerji Denklemleri". Akışkanlar Mekaniği Temelleri ve Uygulamaları. Palme Yayıncılık. ss. 189-190. ISBN 978-605-355-274-1. KB1 bakım: Fazladan yazı: yazar listesi (link)
  5. ^ Anderson, J. D. (2007). Fundamentals of Aerodynamics (4. bas.). Londra: McGraw–Hill. ISBN 0-07-125408-0. 
  • g
  • t
  • d
Akışkanlar mekaniği
Akışkanlar statiği
  • Hidrolik
  • Arşimet prensibi
Akışkanlar dinamiği
  • Hesaplamalı akışkanlar dinamiği
  • Aerodinamik
  • Navier-Stokes denklemleri
  • Sınır tabaka
    • Giriş uzunluğu
Boyutsuz sayılar
  • Arşimet
  • Atwood
  • Bagnold
  • Bejan
  • Biot
  • Bond
  • Brinkman
  • Cauchy
  • Chandrasekhar
  • Damköhler
  • Darcy
  • Dean
  • Deborah
  • Dukhin
  • Eckert
  • Ekman
  • Eötvös
  • Euler
  • Froude
  • Galilei
  • Graetz
  • Grashof
  • Görtler
  • Hagen
  • Iribarren
  • Kapiller
  • Kapitza
  • Keulegan–Carpenter
  • Knudsen
  • Laplace
  • Lewis
  • Mach
  • Marangoni
  • Morton
  • Nusselt
  • Ohnesorge
  • Péclet
  • Prandtl
    • manyetik
    • türbülanslı
  • Rayleigh
  • Reynolds
    • manyetik
  • Richardson
  • Roshko
  • Rossby
  • Rouse
  • Schmidt
  • Scruton
  • Sherwood
  • Shields
  • Stanton
  • Stokes
  • Strouhal
  • Stuart
  • Suratman
  • Taylor
  • Ursell
  • Weber
  • Weissenberg
  • Womersley
  • g
  • t
  • d
Isıtma, havalandırma ve iklimlendirme
Temel
kavramlar
  • Saatte hava değişimi
  • Pişirme
  • Bina kaplaması
  • Konveksiyon
  • seyreltme
  • Yerli enerji tüketimi
  • Entalpi
  • Akışkanlar dinamiği
  • Gaz kompresörü
  • Soğutma çevrimi
  • Isı aktarımı
  • Nem
  • Sızma
  • Gizli ısı
  • Gürültü kontrolü
  • Gaz atma
  • Partikül
  • Psikrometri
  • Hissedilen sıcaklık
  • Baca etkisi
  • Termal rahatlık
  • Termal destratifikasyon
  • Termal Kütle
  • Termodinamik
  • Suyun buhar basıncı
Teknoloji
  • Absorpsiyonlu buzdolabı
  • Hava bariyeri
  • Klima
  • Antifriz
  • Otomobil kliması
  • Özerk bina
  • Yapı yalıtım malzemeleri
  • Isıtma
  • Merkezi ısıtma
  • Merkezi güneş enerjisiyle ısıtma
  • Soğutulmuş ışın
  • Donmuş su
  • Sabit hava hacmi (CAV)
  • Soğutucu
  • Özel dış hava sistemi (DOAS)
  • Derin su kaynağı soğutması
  • Talep kontrollü havalandırma (DCV)
  • Yer değiştirme havalandırması
  • Bölgesel ısıtma sistemi
  • Merkezi ısıtma
  • Elektrikli ısıtma
  • Enerji geri kazanımlı havalandırma (ERV)
  • Yangın durdurma
  • Basincli hava
  • Zorunlu hava gazı
  • Serbest soğutma
  • Isı geri kazanımlı havalandırma (HRV)
  • Hibrit ısı
  • Hidronik
  • Buz depolama kliması
  • Mutfak havalandırması
  • Karma modlu havalandırma
  • Mikrojenerasyon
  • Pasiv havalandırma
  • Pasif soğutma
  • Pasif ev
  • Radyant ısıtma ve soğutma sistemi
  • Radon azaltma
  • Soğutma
  • Yenilenebilir ısı
  • Oda hava dağıtımı
  • Güneş enerjisi hava ısısı
  • Güneş kombi sistemi
  • Güneş kliması
  • Düzlemsel güneş kollektörü
  • Isı yalıtımı
  • Yerden hava dağıtımı
  • Yerden ısıtma
  • Buhar bariyeri
  • Buhar sıkıştırmalı soğutma (VCRS)
  • Değişken hava hacmi (VAV)
  • Değişken soğutucu akışı (VRF)
  • Havalandırma
Bileşenler
  • İnvertör
  • Hava perdesi
  • Hava filtresi
  • Hava işleyici
  • Hava iyonlaştırıcı
  • Hava karıştırma plenumu
  • Hava temizleme cihazları
  • Hava kaynaklı ısı pompası
  • Otomatik dengeleme valfi
  • Arka kazan
  • Bariyer borusu
  • Patlama damperi
  • Kazan
  • Santrifüj fan
  • Seramik ısıtıcı
  • Soğutma grubu
  • Yoğuşma pompası
  • Yoğuşturucu
  • Yoğuşmalı kazan
  • Konveksiyon ısıtıcısı
  • Gaz kompresörü
  • Soğutma kulesi
  • Damper
  • Nem giderici
  • Kanal
  • Ekonomizer
  • Elektrostatik presipitatör
  • Evaporatif soğutucu
  • Buharlaştırıcı
  • Egzoz davlumbazı
  • Genleşme tankı
  • Fan coil ünitesi
  • Fan filtre ünitesi
  • Fanlı ısıtıcı
  • Yangın damperi
  • Şömine
  • Şömine eki
  • İstatistik dondurma
  • Baca
  • Freon
  • Çeker ocak
  • Kazan ocağı
  • Gaz kompresörü
  • Gaz ısıtıcısı
  • Benzinli ısıtıcı
  • Jeotermal ısı pompası
  • Gres kanalı
  • Izgara
  • Toprak bağlantılı ısı eşanjörü
  • Isı değiştirici
  • Isı borusu
  • Isı pompası
  • Isıtma filmi
  • Isıtma sistemi
  • Yüksek verimli salmastrasız sirkülasyon pompası
  • HEPA
  • Yüksek basınç kesme anahtarı
  • Nemlendirici
  • Kızılötesi ısıtıcı
  • İnverter kompresör
  • Kerosen ısıtıcısı
  • Panjur
  • Vantilatör
  • Mekanik oda
  • Yağ ısıtıcısı
  • Paketlenmiş terminal kliması
  • Plenum alanı
  • Basınçlandırma kanalı
  • Proses kanalı çalışması
  • Radyatör
  • Radyatör reflektörü
  • Reküperatör
  • Soğutucu gazlar
  • Kaydol
  • Geri dönüş valfi
  • Etrafında dönen bobin
  • Kaydırmalı kompresör
  • Güneş bacası
  • Güneş destekli ısı pompası
  • Oda ısıtıcısı
  • Duman egzoz kanalı
  • Termal genleşme valfi
  • Termal tekerlek
  • Termosifon
  • Termostatik radyatör vanası
  • Damlama havalandırma
  • Trom duvar
  • Döner kanatlar
  • Ultra düşük partikül havası (ULPA)
  • Ev vantilatörü
  • Rüzgar Avcısı
  • Odun sobası
Ölçüm
ve kontrol
  • Hava akış ölçer
  • Aquastat
  • BACnet
  • Üfleyici kapısı
  • Bina otomasyonu
  • Karbondioksit sensörü
  • Temiz Hava Dağıtım Oranı (CADR)
  • Gaz dedektörü
  • Ev enerji monitörü
  • Nemlendirici
  • HVAC kontrol sistemi
  • LonWorks
  • Minimum verimlilik raporlama değeri (MERV)
  • OpenTherm
  • Programlanabilir iletişim termostatı
  • Programlanabilir termostat
  • Psikrometri
  • Oda sıcaklığı
  • Akıllı termostat
  • Termostat
  • Termostatik radyatör vanası
Meslekler,
ticaret,
ve hizmetler
  • Mimari akustik
  • Yapı mühendisliği
  • Mimari teknoloji uzmanı
  • Bina hizmetleri mühendisliği
  • Yapı bilgi modellemesi (BIM)
  • Derin enerji güçlendirme
  • Kanal sızıntı testi
  • Çevre mühendisliği
  • Hidronik dengeleme
  • Mutfak egzoz temizliği
  • Makine mühendisliği
  • Mekanik, elektrik ve sıhhi tesisat
  • Küf gelişimi, değerlendirme ve iyileştirme
  • Soğutucu akışkan ıslahı
  • Test etme, ayarlama, dengeleme
Sanayi
kuruluşları
  • AHRI
  • AMCA
  • ASHRAE
  • Astm normu
  • BRE
  • BSRIA
  • CIBSE
  • Soğutma Enstitüsü
  • IIR
  • LEED
  • SMACNA
Sağlık ve güvenlik
  • İç mekan hava kalitesi (IAQ)
  • Pasif içicilik
  • Hasta bina sendromu (SBS)
  • Uçucu organik bileşik (VOC)
Ayrıca bakınız
  • ASHRAE Handbook
  • Yapı bilimi
  • Yangına dayanıklılık
  • HVAC terimleri sözlüğü
  • Dünya Soğutma Günü
  • Şablon:Ev otomasyonu
  • Şablon:Güneş enerjisi
Otorite kontrolü Bunu Vikiveri'de düzenleyin
  • BNE: XX4659783
  • BNF: cb119314166 (data)
  • LCCN: sh85049376
  • NKC: ph114380
  • NLI: 987007538448805171
  • NLK tanımlayıcısı KSH1998024462 geçerli değil.
"https://tr.wikipedia.org/w/index.php?title=Akışkanlar_dinamiği&oldid=35768446" sayfasından alınmıştır
Kategori:
  • Akışkanlar dinamiği
Gizli kategoriler:
  • KB1 bakım: Fazladan yazı: yazar listesi
  • Ek kaynaklar gereken maddeler Haziran 2020
  • Ek kaynaklar gereken tüm maddeler
  • Türkçeleştirilmesi gereken sayfalar
  • BNE tanımlayıcısı olan Vikipedi maddeleri
  • BNF tanımlayıcısı olan Vikipedi maddeleri
  • LCCN tanımlayıcısı olan Vikipedi maddeleri
  • NKC tanımlayıcısı olan Vikipedi maddeleri
  • NLI tanımlayıcısı olan Vikipedi maddeleri
  • Sorunlu tanımlayıcı (NLK) içeren Vikipedi maddeleri
  • Sayfa en son 01.44, 6 Ağustos 2025 tarihinde değiştirildi.
  • Metin Creative Commons Atıf-AynıLisanslaPaylaş Lisansı altındadır ve ek koşullar uygulanabilir. Bu siteyi kullanarak Kullanım Şartlarını ve Gizlilik Politikasını kabul etmiş olursunuz.
    Vikipedi® (ve Wikipedia®) kâr amacı gütmeyen kuruluş olan Wikimedia Foundation, Inc. tescilli markasıdır.
  • Gizlilik politikası
  • Vikipedi hakkında
  • Sorumluluk reddi
  • Davranış Kuralları
  • Geliştiriciler
  • İstatistikler
  • Çerez politikası
  • Mobil görünüm
  • Wikimedia Foundation
  • Powered by MediaWiki
Akışkanlar dinamiği
Konu ekle