Lie cebiri - Vikipedi
İçeriğe atla
Ana menü
Gezinti
  • Anasayfa
  • Hakkımızda
  • İçindekiler
  • Rastgele madde
  • Seçkin içerik
  • Yakınımdakiler
Katılım
  • Deneme tahtası
  • Köy çeşmesi
  • Son değişiklikler
  • Dosya yükle
  • Topluluk portalı
  • Wikimedia dükkânı
  • Yardım
  • Özel sayfalar
Vikipedi Özgür Ansiklopedi
Ara
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç

İçindekiler

  • Giriş
  • 1 Tanım

Lie cebiri

  • العربية
  • Català
  • Čeština
  • Deutsch
  • English
  • Esperanto
  • Español
  • فارسی
  • Français
  • Galego
  • עברית
  • Hrvatski
  • Magyar
  • İnterlingua
  • Bahasa Indonesia
  • İtaliano
  • 日本語
  • ქართული
  • 한국어
  • Nederlands
  • Norsk nynorsk
  • Norsk bokmål
  • ਪੰਜਾਬੀ
  • Polski
  • Português
  • Русский
  • Српски / srpski
  • Svenska
  • Українська
  • Tiếng Việt
  • 中文
Bağlantıları değiştir
  • Madde
  • Tartışma
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Araçlar
Eylemler
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Genel
  • Sayfaya bağlantılar
  • İlgili değişiklikler
  • Kalıcı bağlantı
  • Sayfa bilgisi
  • Bu sayfayı kaynak göster
  • Kısaltılmış URL'yi al
  • Karekodu indir
Yazdır/dışa aktar
  • Bir kitap oluştur
  • PDF olarak indir
  • Basılmaya uygun görünüm
Diğer projelerde
  • Vikiveri ögesi
Görünüm
Vikipedi, özgür ansiklopedi

Lie işlemcisi, matematikte ve fizikte geniş bir kullanım alanı bulur. Bir cismin üzerine bu dönüşüm ile tanımlanan yöney (vektör) uzayı Lie cebri olarak adlandırılır. Adını Sophus Lie'den almıştır.

Tanım

[değiştir | kaynağı değiştir]

V, bir K cismi üzerinde tanımlanmış bir vektör alanı olsun ve [,]:V × V → V dönüşümü de;

  • çifte doğrusal (bilineer),
[ a X + b Y , Z ] = a [ X , Z ] + b [ Y , Z ] {\displaystyle [aX+bY,Z]=a[X,Z]+b[Y,Z]} {\displaystyle [aX+bY,Z]=a[X,Z]+b[Y,Z]}
[ Z , a X + b Y ] = a [ Z , X ] + b [ Z , Y ] {\displaystyle [Z,aX+bY]=a[Z,X]+b[Z,Y]} {\displaystyle [Z,aX+bY]=a[Z,X]+b[Z,Y]}
  • Karşıt değişmeli (anti simetrik)
[ X , Y ] = − [ Y , X ] {\displaystyle [X,Y]=-[Y,X]} {\displaystyle [X,Y]=-[Y,X]}
  • Jacobi birimli,
[ X , [ Y , Z ] ] + [ Y , [ Z , X ] ] + [ Z , [ X , Y ] ] = 0 {\displaystyle [X,[Y,Z]]+[Y,[Z,X]]+[Z,[X,Y]]=0} {\displaystyle [X,[Y,Z]]+[Y,[Z,X]]+[Z,[X,Y]]=0}

olarak verilsin. [ ⋅ , ⋅ ] {\displaystyle [\cdot ,\cdot ]} {\displaystyle [\cdot ,\cdot ]} dönüşümüne, V üzerinde bir Lie işlemcisi (Lie ayraç işlemcisi) denir. Bu durumda V yöney (vektör) uzayına bir Lie cebiri denmez.

  • g
  • t
  • d
Cebir
Alanlar
  • Soyut cebir
  • Kategori teorisi
  • Temel cebir
  • K-teori
  • Değişmeli cebir
  • Geçişli olmayan cebir
  • Sıra teorisi
  • Evrensel cebir
  • Homolojik cebir
  • Bilgisayar cebri (Boole cebri  • İletişim sistemleri cebiri  • İlişkisel cebir)
  • Mantıksal Cebir
  • Temsil teorisi
Cebirsel yapılar
  • Grup teorisi (Grup)
  • Halka teorisi (Halka)
  • Modül teorisi (Modül)
  • Cisim
  • Alan
  • Polinom Halkaları (Polinom)
  • Birleşmeli cebir
  • Lie cebiri
Lineer cebir
  • Matris teorisi
  • Vektör uzayı (Vektör  • Vektör hesabı)
  • Modül
  • İç çarpım uzayı (Nokta çarpım)
  • Hilbert uzayı
Çokludoğrusal cebir
  • Tensör cebri (Tensör)
  • Dış cebir
  • Simetrik cebir
  • Geometrik cebir (Çoklu vektör)
Listeler
  • Soyut cebir
  • Cebirsel yapılar
  • Grup teorisi
  • Doğrusal cebir
  • Sophus Lie
Tablolar
  • Lie gruplarının tablosu
Sözlükler
  • Doğrusal cebir
  • Cisim teorisi
  • Halka teorisi
  • Sıra teorisi
İlgili konular
  • Matematik
  • Cebir tarihi
  • Cebirsel geometri
  • Cebirsel kombinatorik
  • Cebirsel topoloji
  • Cebirsel sayı teorisi
  • Cebirin temel teoremi
  • Üreteç
  • Heyting cebri
  • Süper açıkorur cebir
  • Kac-Moody cebiri
  • Hopf cebiri
  • Poisson cebri
  • Heisenberg cebri
  • Kategori Kategori
  • Vikikitap sayfası Wikibooks
    • Temel
    • Lineer
    • Soyut
  • Vikiversite sayfası Wikiversity
    • Lineer
    • Soyut
Taslak simgesiCebir ile ilgili bu madde taslak seviyesindedir. Madde içeriğini genişleterek Vikipedi'ye katkı sağlayabilirsiniz.
Otorite kontrolü Bunu Vikiveri'de düzenleyin
  • BNE: XX535297
  • BNF: cb119444791 (data)
  • GND: 4130355-6
  • LCCN: sh85076782
  • NDL: 00567367
  • NKC: ph234835
  • NLI: 987007529233905171
  • SUDOC: 027392600
"https://tr.wikipedia.org/w/index.php?title=Lie_cebiri&oldid=27787349" sayfasından alınmıştır
Kategoriler:
  • Cebir taslakları
  • Lie cebirleri
Gizli kategoriler:
  • Tüm taslak maddeler
  • BNE tanımlayıcısı olan Vikipedi maddeleri
  • BNF tanımlayıcısı olan Vikipedi maddeleri
  • GND tanımlayıcısı olan Vikipedi maddeleri
  • LCCN tanımlayıcısı olan Vikipedi maddeleri
  • NDL tanımlayıcısı olan Vikipedi maddeleri
  • NKC tanımlayıcısı olan Vikipedi maddeleri
  • NLI tanımlayıcısı olan Vikipedi maddeleri
  • SUDOC tanımlayıcısı olan Vikipedi maddeleri
  • Sayfa en son 22.11, 15 Mayıs 2022 tarihinde değiştirildi.
  • Metin Creative Commons Atıf-AynıLisanslaPaylaş Lisansı altındadır ve ek koşullar uygulanabilir. Bu siteyi kullanarak Kullanım Şartlarını ve Gizlilik Politikasını kabul etmiş olursunuz.
    Vikipedi® (ve Wikipedia®) kâr amacı gütmeyen kuruluş olan Wikimedia Foundation, Inc. tescilli markasıdır.
  • Gizlilik politikası
  • Vikipedi hakkında
  • Sorumluluk reddi
  • Davranış Kuralları
  • Geliştiriciler
  • İstatistikler
  • Çerez politikası
  • Mobil görünüm
  • Wikimedia Foundation
  • Powered by MediaWiki
Lie cebiri
Konu ekle