Birebir örten fonksiyon - Vikipedi
İçeriğe atla
Ana menü
Gezinti
  • Anasayfa
  • Hakkımızda
  • İçindekiler
  • Rastgele madde
  • Seçkin içerik
  • Yakınımdakiler
Katılım
  • Deneme tahtası
  • Köy çeşmesi
  • Son değişiklikler
  • Dosya yükle
  • Topluluk portalı
  • Wikimedia dükkânı
  • Yardım
  • Özel sayfalar
Vikipedi Özgür Ansiklopedi
Ara
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç

İçindekiler

  • Giriş
  • 1 Tanım
  • 2 Örnekler
    • 2.1 Spor müsabakalarında başlangıç
    • 2.2 Sınıftaki öğrenciler
  • 3 Tersinme
  • 4 Özellikleri
  • 5 Birebir örtenlik ve kısmi fonksiyonlar
  • 6 Ayrıca bakınız
  • 7 Dış bağlantılar
  • 8 Kaynakça

Birebir örten fonksiyon

  • العربية
  • Azərbaycanca
  • Беларуская
  • Български
  • Bosanski
  • Català
  • Corsu
  • Čeština
  • Dansk
  • Deutsch
  • Ελληνικά
  • English
  • Esperanto
  • Español
  • Eesti
  • Euskara
  • فارسی
  • Suomi
  • Français
  • Galego
  • עברית
  • हिन्दी
  • Hrvatski
  • Magyar
  • Հայերեն
  • İnterlingua
  • Bahasa Indonesia
  • Ido
  • Íslenska
  • İtaliano
  • 日本語
  • Қазақша
  • 한국어
  • Latina
  • Lombard
  • Lietuvių
  • Македонски
  • Nederlands
  • Norsk nynorsk
  • Norsk bokmål
  • Occitan
  • Polski
  • Português
  • Română
  • Русский
  • Scots
  • Simple English
  • Slovenčina
  • Slovenščina
  • Српски / srpski
  • Svenska
  • தமிழ்
  • ไทย
  • Українська
  • Tiếng Việt
  • 中文
  • 粵語
Bağlantıları değiştir
  • Madde
  • Tartışma
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Araçlar
Eylemler
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Genel
  • Sayfaya bağlantılar
  • İlgili değişiklikler
  • Kalıcı bağlantı
  • Sayfa bilgisi
  • Bu sayfayı kaynak göster
  • Kısaltılmış URL'yi al
  • Karekodu indir
Yazdır/dışa aktar
  • Bir kitap oluştur
  • PDF olarak indir
  • Basılmaya uygun görünüm
Diğer projelerde
  • Wikimedia Commons
  • Vikiveri ögesi
Görünüm
Vikipedi, özgür ansiklopedi
(Bijeksiyon sayfasından yönlendirildi)
Bu maddedeki bilgilerin doğrulanabilmesi için ek kaynaklar gerekli. Lütfen güvenilir kaynaklar ekleyerek maddenin geliştirilmesine yardımcı olun. Kaynaksız içerik itiraz konusu olabilir ve kaldırılabilir.
Kaynak ara: "Birebir örten fonksiyon" – haber · gazete · kitap · akademik · JSTOR
(Şubat 2017) (Bu şablonun nasıl ve ne zaman kaldırılması gerektiğini öğrenin)
Birebir örten fonksiyon, f: X › Y, X kümesi {1, 2, 3, 4} ve Y kümesi {A, B, C, D} olsun. Örneğin, f(1) = D olarak ifade edilir.

Birebir örten fonksiyon (bijeksiyon fonksiyon), matematikte hem birebir hem örten fonksiyon özelliklerini aynı anda gösteren fonksiyonlardır. İki küme arasındaki fonksiyonda 1. kümeden her bir eleman ikinci kümedeki elemanla eşleşir ve her iki kümeden açıkta eleman kalmaz. Örten fonksiyon görüntü kümesinde boşta eleman kalmayacak şekilde eşleşmenin gerçekleştiği, birebir fonksiyon ise her bir elemanın diğer kümenin bir elemanıyla eşleştiği fonksiyondur. Birebir örten fonksiyonlar ise bu iki fonksiyonun özelliklerine aynı anda sahip olan fonksiyonlardır.

Birebir örten fonksiyonlar terslenebilir özelliktedir ve bu tip fonksiyonlara permütasyon ismi verilir.

Tanım

[değiştir | kaynağı değiştir]

"X" ve "Y" (burada Y nin X den farklı olmasına gerek yoktur) arasında bir eşleşme için bir dört nokta olmalıdır:

  1. X kümesinin her bir elemanı en az bir Y elemanı ile eşleştirilmelidir,
  2. X kümesinin elemanları birden fazla Y elemanı ile eşleştirilemez,
  3. Y kümesinin her bir elemanı en az bir X elemanı ile eşleştirilmelidir; ve
  4. Y kümesinin hiçbir elemanı birden fazla X elemanı ile eşleşmemelidir.

Örnekler

[değiştir | kaynağı değiştir]

Spor müsabakalarında başlangıç

[değiştir | kaynağı değiştir]

Bir futbol takımını ele alalım. Başlangıçta çeşitli pozisyonlarda 11 oyuncu sahaya çıkacaktır. Antrenör liste üzerinden yerleşimini yapar. Buna göre;

  1. Her sporcu 11 kişilik listede yer almıştır.
  2. Listedeki pozisyonların (kaleci, stoper, forvet) tamamı doludur.
  3. Hiçbir sporcu iki ayrı pozisyona yazılmamıştır.
  4. Hiçbir pozisyonda birden fazla sporcu bulunmamıştır.

Sınıftaki öğrenciler

[değiştir | kaynağı değiştir]

Bir sınıfta belli sayıda sandalye vardır. Bir grup öğrenci odaya girer ve öğretmen hepsine oturmasını söyler. Odaya hızlı bir şekilde baktıktan sonra, öğretmen, öğrenci grubu ile koltuk kümesi arasında sayıca eşitlik bulunduğunu ve burada her bir öğrencinin oturduğu koltuk ile eşleştirildiğini bildirir. Sonuç;

  1. Her öğrenci bir sandalyeye oturmuştur. (Ayakta kalan yoktur)
  2. Hiçbir öğrenci birden fazla sandalye işgal etmemektedir.
  3. Tüm sandalyeler dolmuştur (boş sandalye kalmamıştır)
  4. Hiçbir sandalyeye birden fazla öğrenci oturmamıştır.

Tersinme

[değiştir | kaynağı değiştir]

Birebir örten fonksiyonların ters fonksiyonu vardır ve buna tersinme özelliği denir.

Özellikleri

[değiştir | kaynağı değiştir]
Solda birebir, sağda örten fonksiyondan oluşan birebir örten fonskiyon.
  • f fonksiyonu; R → R, birebir ve örten ise koordinat sisteminin yatay ve düşey eksenlerini yalnızca birer defa keser.
  • Birebir örten fonksiyonlar için aşağıdaki eşitlikler geçerlidir.
|f(A)| = |A| ve |f−1(B)| = |B|.
  • X ve Y sonlu kümeler olsun. f: X → Y için ;
1. f fonksiyonu birebir ve örtendir.
2. f fonksiyonu birebirdir.
3. f fonksiyonu örtendir.

Birebir örtenlik ve kısmi fonksiyonlar

[değiştir | kaynağı değiştir]
Bir kısmi fonksiyon.

Kısmi fonksiyonlar için birebir olmaları yeterli olmasından ötürü, her birebir örten fonksiyon aynı zamanda kısmi fonksiyondur. Bir tabandaki tüm kısmi birebir örten kümesine simetrik ters grup denir.[1] Kısmi fonksiyonlar aynı tabandaki kümelerde olduğunda genellikle birebir kısmi dönüşümler (transformasyonlar) olarak adlandırılır.[2] Bu tanıma bir örnek olarak, genişletilmiş karmaşık düzlemin tamamlanması yerine basitçe karmaşık düzlem üzerinde tanımlanan Möbius dönüşümü gösterilebilir.[3]

Ayrıca bakınız

[değiştir | kaynağı değiştir]
  • Birebir fonksiyon
  • Örten fonksiyon
  • Birim fonksiyon
  • Bileşke fonksiyon
  • Sabit fonksiyon
  • Ters fonksiyon

Dış bağlantılar

[değiştir | kaynağı değiştir]
  • Matematik terimleri ve eskiden kullanımları (İngilizce).17 Ağustos 2017 tarihinde Wayback Machine sitesinde arşivlendi.
  • Birebir ve örten fonksiyon

Kaynakça

[değiştir | kaynağı değiştir]
  1. ^ Christopher Hollings (16 Temmuz 2014). Mathematics across the Iron Curtain: A History of the Algebraic Theory of Semigroups. American Mathematical Society. s. 251. ISBN 978-1-4704-1493-1. 15 Aralık 2019 tarihinde kaynağından arşivlendi. Erişim tarihi: 7 Ocak 2017. 
  2. ^ Pierre A. Grillet (1995). Semigroups: An Introduction to the Structure Theory. CRC Press. s. 228. ISBN 978-0-8247-9662-4. 24 Aralık 2016 tarihinde kaynağından arşivlendi. Erişim tarihi: 7 Ocak 2017. 
  3. ^ John Meakin (2007). "Groups and semigroups: connections and contrasts". C.M. Campbell, M.R. Quick, E.F. Robertson, G.C. Smith (Ed.). Groups St Andrews 2005 Volume 2. Cambridge University Press. s. 367. ISBN 978-0-521-69470-4. KB1 bakım: Editörler parametresini kullanan (link) preprint 30 Ağustos 2017 tarihinde Wayback Machine sitesinde arşivlendi. citing Lawson, M. V. (1998). "The Möbius Inverse Monoid". Journal of Algebra. 200 (2). s. 428. doi:10.1006/jabr.1997.7242. 
  • g
  • t
  • d
Matematiksel fonksiyonlar
Kümeler kuramına göre
  • Birebir fonksiyon
  • Örten fonksiyon
  • Birebir örten fonksiyon
  • Birim fonksiyon
  • Bileşke fonksiyon
  • Sabit fonksiyon
  • Boş fonksiyon
  • Ters fonksiyon
  • Özdeş fonksiyon
  • Parçalı fonksiyon
  • İçine fonksiyon
İşleme göre
  • Toplama fonksiyon
  • Çarpım fonksiyonu
  • Çift fonksiyon
  • Tek fonksiyon
  • Alttoplamsal fonksiyon
  • Üsttoplamsal fonksiyon
Topolojiye göre
  • Sürekli fonksiyon
  • Hiçbir yerde sürekli fonksiyon
  • Homeomorfizma
Sıralamaya göre
  • Monoton fonksiyon
  • Sınırlı monoton fonksiyon
Gerçel/Karmaşık sayılara göre
  • Analitik fonksiyon
  • Aritmetik fonksiyon
  • Diferansiyellenebilir fonksiyon
  • Düzgün fonksiyon
  • Holomorf fonksiyon
  • Meromorf fonksiyon
  • Tam fonksiyon
"https://tr.wikipedia.org/w/index.php?title=Birebir_örten_fonksiyon&oldid=36018498" sayfasından alınmıştır
Kategoriler:
  • Fonksiyonlar
  • Kümeler kuramının temel kavramları
Gizli kategoriler:
  • KB1 bakım: Editörler parametresini kullanan
  • Webarşiv şablonu wayback bağlantıları
  • Ek kaynaklar gereken maddeler Şubat 2017
  • Ek kaynaklar gereken tüm maddeler
  • Sayfa en son 19.26, 12 Eylül 2025 tarihinde değiştirildi.
  • Metin Creative Commons Atıf-AynıLisanslaPaylaş Lisansı altındadır ve ek koşullar uygulanabilir. Bu siteyi kullanarak Kullanım Şartlarını ve Gizlilik Politikasını kabul etmiş olursunuz.
    Vikipedi® (ve Wikipedia®) kâr amacı gütmeyen kuruluş olan Wikimedia Foundation, Inc. tescilli markasıdır.
  • Gizlilik politikası
  • Vikipedi hakkında
  • Sorumluluk reddi
  • Davranış Kuralları
  • Geliştiriciler
  • İstatistikler
  • Çerez politikası
  • Mobil görünüm
  • Wikimedia Foundation
  • Powered by MediaWiki
Birebir örten fonksiyon
Konu ekle