Boyut indirgeme - Vikipedi
İçeriğe atla
Ana menü
Gezinti
  • Anasayfa
  • Hakkımızda
  • İçindekiler
  • Rastgele madde
  • Seçkin içerik
  • Yakınımdakiler
Katılım
  • Deneme tahtası
  • Köy çeşmesi
  • Son değişiklikler
  • Dosya yükle
  • Topluluk portalı
  • Wikimedia dükkânı
  • Yardım
  • Özel sayfalar
Vikipedi Özgür Ansiklopedi
Ara
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç

İçindekiler

  • Giriş
  • 1 Kaynakça

Boyut indirgeme

  • العربية
  • Català
  • Čeština
  • English
  • Español
  • فارسی
  • Français
  • עברית
  • Bahasa Indonesia
  • İtaliano
  • 日本語
  • 한국어
  • Polski
  • Русский
  • ไทย
  • Українська
  • Tiếng Việt
  • 中文
  • 粵語
Bağlantıları değiştir
  • Madde
  • Tartışma
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Araçlar
Eylemler
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Genel
  • Sayfaya bağlantılar
  • İlgili değişiklikler
  • Kalıcı bağlantı
  • Sayfa bilgisi
  • Bu sayfayı kaynak göster
  • Kısaltılmış URL'yi al
  • Karekodu indir
Yazdır/dışa aktar
  • Bir kitap oluştur
  • PDF olarak indir
  • Basılmaya uygun görünüm
Diğer projelerde
  • Vikiveri ögesi
Görünüm
Vikipedi, özgür ansiklopedi
Makine öğrenmesi ve
veri madenciliği
Problemler
  • Sınıflandırma
  • Kümeleme
  • Regresyon
  • Anomali tespiti
  • Association rules
  • Pekiştirmeli öğrenme
  • Yapılandırılmış tahmin
  • Öznitelik mühendisliği
  • Öznitelik öğrenmesi
  • Öznitelik çıkarımı
  • Online öğrenme
  • Yarı-gözetimli öğrenme
  • Gözetimsiz öğrenme
  • Sıralama öğrenme
  • Gramer Tümevarımı
Gözetimli öğrenme
  • Karar ağacı
  • Birlik öğrenmesi
  • k-YK
  • Doğrusal regresyon
  • Naive Bayes
  • Sinir ağları
  • Lojistik regresyon
  • Relevance vector machine (RVM)
  • Support vector machine (SVM)
  • Rastgele orman
Kümeleme
  • BIRCH
  • Hiyerarşik
  • k-means
  • Beklenti maksimizasyon

  • DBSCAN
  • OPTICS
  • Mean-shift
Boyut indirgeme
  • Faktör analizi
  • CCA
  • ICA
  • LDA
  • NMF
  • PCA
  • t-SNE
Yapılandırılmış tahmin
  • Grafiksel modeller (Bayes ağları, CRF, HMM)
Anomali tespiti
  • k-NN
  • Local outlier factor
Sinir ağları
  • Perseptron
  • Otokodlayıcı
  • Derin öğrenme
  • RNN
  • LSTM
  • Kısıtlı Boltzmann makinesi
  • SOM
  • Kıvrımlı sinir ağları
Pekiştirmeli öğrenme
  • Q-Learning
  • SARSA
  • Temporal Difference (TD)
Teori
  • Bias-variance ikilemi
  • Hesaplamalı öğrenme teorisi
  • Empirik risk minimizasyonu
  • Occam learning
  • PAC learning
  • İstatistiki öğrenme teorisi
  • VC theory
Konferanslar ve dergiler
  • NIPS
  • ICML
  • ML
  • JMLR
  • ArXiv:cs.LG
  • g
  • t
  • d

Veri biliminde, boyut indirgeme, bir verinin yüksek boyutlu bir uzaydan, düşük boyutlu bir uzaya, anlamını kaybetmeyecek şekilde dönüştürülmesidir.[1] Yüksek boyutlu bir veriyi işlemek daha fazla işlem yükü gerektirir. Bu yüzden, yüksek sayıda gözlemin ve değişkenin incelendiği sinyal işleme, konuşma tanıma, nöroinformatik, biyoinformatik gibi alanlarda boyut indiremesi sıkça kullanılır.[2]

Boyut indirgeme yaklaşımları doğrusal ve doğrusal olmayan olarak ikiye ayrılır.[2] Boyut indirgeme var olan özniteliklerin bir alt kümesini seçerek ya da yeni öznitelikler çıkararak yapılabilir.[3] Boyut indirgemesi gürültü filtreleme, veri görselleştirme ya da kümeleme analizi amacıyla kullanılabileceği gibi, diğer makine öğrenimi yöntemlerinin ön adımı olarak uygulanabilir.

Kaynakça

[değiştir | kaynağı değiştir]
  1. ^ Eray Yıldız; Yusuf Sevim. "Sınıflandırma Yöntemleri Üzerinde Lineer Boyut İndirgeme Yöntemlerinin Karşılaştırılması" [Comparison Of Linear Dimensionality Reduction Methods On Classification Methods] (PDF). emo.org.tr. 10 Ocak 2020 tarihinde kaynağından arşivlendi (PDF)19 Temmuz 2020. 
  2. ^ a b van der Maaten, Laurens; Postma, Eric; van den Herik, Jaap (26 Ekim 2009). "Dimensionality Reduction: A Comparative Review" (PDF). J Mach Learn Res. 10: 66-71. 19 Temmuz 2020 tarihinde kaynağından arşivlendi (PDF)19 Temmuz 2020. 
  3. ^ Pudil, P.; Novovičová, J. (1998). "Novel Methods for Feature Subset Selection with Respect to Problem Knowledge". Liu, Huan; Motoda, Hiroshi (Ed.). Feature Extraction, Construction and Selection. s. 101. doi:10.1007/978-1-4615-5725-8_7. ISBN 978-1-4613-7622-4. 
Otorite kontrolü Bunu Vikiveri'de düzenleyin
  • GND: 4224279-4
"https://tr.wikipedia.org/w/index.php?title=Boyut_indirgeme&oldid=32738746" sayfasından alınmıştır
Kategoriler:
  • Boyut indirgeme
  • Makine öğrenimi
Gizli kategori:
  • GND tanımlayıcısı olan Vikipedi maddeleri
  • Sayfa en son 19.49, 10 Mayıs 2024 tarihinde değiştirildi.
  • Metin Creative Commons Atıf-AynıLisanslaPaylaş Lisansı altındadır ve ek koşullar uygulanabilir. Bu siteyi kullanarak Kullanım Şartlarını ve Gizlilik Politikasını kabul etmiş olursunuz.
    Vikipedi® (ve Wikipedia®) kâr amacı gütmeyen kuruluş olan Wikimedia Foundation, Inc. tescilli markasıdır.
  • Gizlilik politikası
  • Vikipedi hakkında
  • Sorumluluk reddi
  • Davranış Kuralları
  • Geliştiriciler
  • İstatistikler
  • Çerez politikası
  • Mobil görünüm
  • Wikimedia Foundation
  • Powered by MediaWiki
Boyut indirgeme
Konu ekle