Lineer regresyon - Vikipedi
İçeriğe atla
Ana menü
Gezinti
  • Anasayfa
  • Hakkımızda
  • İçindekiler
  • Rastgele madde
  • Seçkin içerik
  • Yakınımdakiler
Katılım
  • Deneme tahtası
  • Köy çeşmesi
  • Son değişiklikler
  • Dosya yükle
  • Topluluk portalı
  • Wikimedia dükkânı
  • Yardım
  • Özel sayfalar
Vikipedi Özgür Ansiklopedi
Ara
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç

İçindekiler

  • Giriş
  • 1 Kaynakça
  • 2 Dış bağlantılar

Lineer regresyon

  • العربية
  • Asturianu
  • Беларуская
  • Català
  • کوردی
  • Čeština
  • Deutsch
  • Ελληνικά
  • English
  • Español
  • Eesti
  • Euskara
  • فارسی
  • Suomi
  • Français
  • Galego
  • עברית
  • Hrvatski
  • Magyar
  • Հայերեն
  • Bahasa Indonesia
  • İtaliano
  • 日本語
  • 한국어
  • Македонски
  • Bahasa Melayu
  • Norsk bokmål
  • Occitan
  • Polski
  • Português
  • Română
  • Русский
  • Simple English
  • Slovenščina
  • Shqip
  • Српски / srpski
  • ไทย
  • Українська
  • Tiếng Việt
  • 中文
  • 粵語
Bağlantıları değiştir
  • Madde
  • Tartışma
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Araçlar
Eylemler
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Genel
  • Sayfaya bağlantılar
  • İlgili değişiklikler
  • Kalıcı bağlantı
  • Sayfa bilgisi
  • Bu sayfayı kaynak göster
  • Kısaltılmış URL'yi al
  • Karekodu indir
Yazdır/dışa aktar
  • Bir kitap oluştur
  • PDF olarak indir
  • Basılmaya uygun görünüm
Diğer projelerde
  • Wikimedia Commons
  • Vikiveri ögesi
Görünüm
Vikipedi, özgür ansiklopedi

İstatistikte lineer regresyon veya doğrusal regresyon, skaler bir yanıt ile bir veya daha fazla açıklayıcı değişken (bağımlı ve bağımsız değişkenler) arasındaki ilişkiyi modellemek için kullanılan doğrusal bir yaklaşımdır. Bir açıklayıcı değişkenin durumu, basit doğrusal regresyon olarak adlandırılır. Birden fazla süreç için çoklu doğrusal regresyon terimi kullanılır.[1] Bu terim, tek bir skaler değişken yerine birden fazla ilişkili bağımlı değişkenin tahmin edildiği çok değişkenli doğrusal regresyondan farklıdır.[2]

Lineer regresyonda ilişkiler, bilinmeyen model parametreleri verilerden tahmin edilen doğrusal öngörücü işlevler kullanılarak modellenir. Bu tür modellere lineer modeller denir.[3] En yaygın olarak, açıklayıcı değişkenlerin (veya öngörücülerin) değerleri verilen yanıtın koşullu ortalamasının, bu değerlerin benzer bir işlevi olduğu varsayılır. Daha az yaygın olarak ise koşullu medyan veya başka bir nicelik kullanılır. Tüm regresyon analizi biçimleri gibi doğrusal regresyon da, çok değişkenli analizin alanı olan tüm bu değişkenlerin ortak olasılık dağılımı yerine yordayıcıların değerleri verilen yanıtın koşullu olasılık dağılımına odaklanır.

Ayrıca lineer regresyon makine öğrenimi alanında çok sık kullanılan bir araçtır. Matematiksel olarak ifade edilmesi "y = w * x + b" şeklidedir. Buradaki w değeri bize eğimi verir yani doğrunun ne kadar dik olduğunu gösterir. Aslında bizim ağırlığımız(weight) b değeri ise bizim koordinat düzleminde y eksenini kestiğini gösterir yani bias değerimizdir.[4]

Kaynakça

[değiştir | kaynağı değiştir]
  1. ^ David A. Freedman (2009). Statistical Models: Theory and Practice. Cambridge University Press. s. 26. A simple regression equation has on the right hand side an intercept and an explanatory variable with a slope coefficient. A multiple regression e right hand side, each with its own slope coefficient 
  2. ^ "Chapter 10, Multivariate regression – Section 10.1, Introduction", Methods of Multivariate Analysis, Wiley Series in Probability and Statistics, 709, John Wiley & Sons, 2012, s. 19, ISBN 9781118391679, 4 Ekim 2024 tarihinde kaynağından arşivlendi16 Haziran 2023  Birden fazla |sürüm= ve |seri= kullanıldı (yardım).
  3. ^ Hilary L. Seal (1967). "The historical development of the Gauss linear model". Biometrika. 54 (1/2): 1-24. doi:10.1093/biomet/54.1-2.1. 
  4. ^ "Linear Regression for Machine Learning". Linear Regression for Machine Learning (İngilizce). 25 Mayıs 2022. 2 Ekim 2022 tarihinde kaynağından arşivlendi. Erişim tarihi: 11 Mart 2025. 

Dış bağlantılar

[değiştir | kaynağı değiştir]
Vikiversite'de
Lineer regresyon ile ilgili kaynaklar bulunur.
Vikikitap
Vikikitap
Vikikitapta bu konu hakkında daha fazla bilgi var:
R Programming
Wikimedia Commons'ta Lineer regresyon ile ilgili ortam dosyaları mevcuttur.
  • En Küçük Kareler Regresyonu 28 Nisan 2021 tarihinde Wayback Machine sitesinde arşivlendi., PhET Etkileşimli simülasyonlar, Colorado Üniversitesi, Boulder
  • g
  • t
  • d
İstatistik
Betimsel istatistik
Sürekli veriler
Merkezî konum
Ortalama (Aritmetik, Geometrik, Harmonik) • Medyan • Mod
Yayılma
Açıklık • Standart sapma • Varyasyon katsayısı • Çeyrekler açıklığı • Kesirlilikler (kantil) (Dörttebirlik, Ondabirlik, Yüzdebirlik)
Dağılım şekli
Varyans • Çarpıklık • Basıklık • Moment (matematik)
İstatistiksel tablolar
Sıklık dağılımı • Çoklu sayılı özetleme tabloları • İlişki tablosu • Çoklu-yönlü sınıflandırma tabloları
İstatistiksel grafikler
Dairesel grafik • Çubuk grafiği • Kutu grafiği • Dal-yaprak grafikleri • Kontrol diyagramı • Histogram • Sıklık çizelgesi • Q-Q grafiği • Serpilme diyagramı
Veri toplama
Örnek tasarımı
Anakütle • Basit rassal örnekleme Örüntülü örnekleme • Tabakalı örnekleme • Küme örneklemesi • Çok aşamalı örnekleme
Deneysel tasarım
Anakütle • İstatistiksel deneysel tasarım tipleri • Deneysel hata • Yineleme • Bloklama • Duyarlılık ve belirleme
Örneklem kavramları
Örneklem büyüklüğü • Sınama gücü • Etki büyüklüğü • Örnekleme dağılımı • Standart hata
Çıkarımsal istatistik
ve
İstatistiksel kestirim ve testler
Çıkarımsal analiz tipleri
Kestirim • Parametrik çıkarımsal analiz • Parametrik olmayan çıkarımsal analiz • Bayesci çıkarımsal analiz • Meta-analiz
Çıkarımsal kestirim
Genel kestirim kavramları
Momentler yöntemi • Enbüyük olabilirlik • Enbüyük artçıl • Bayes-tipi kestirimci • Minimum uzaklık • Maksimum aralık verme
Tekdeğişkenli kestirim
Kestirim • Güven aralığı • İnanılır aralık
Hipotez testi
İstatistiksel test ana kavramları
Sıfır hipotez • I.Tür ve II.Tür hata • Anlamlılık seviyesi • p-değeri
Basit tek-değişkenli ve iki-değişkenli
parametrik hipotez testi
μ için testi •

π için test • μ1-μ2 için test • π1-π2 için test •

σ1/σ2 için test
Tek-değişkenli ve iki-değişkenli
parametrik olmayan test analizi
Medyan testi • Ki-kare testi • Pearson ki-kare testi • Phi katsayısı • Wald testi • Mann-Whitney U testi • Wilcoxon'in işaretli sıralama testi
Korelasyon
ve
Regresyon analizi
Korelasyon
Pearson çarpım-moment korelasyonu • Sıralama korelasyonu ( Spearman'in rho • Kendall'in tau)
Doğrusal regresyon
Regresyon analizi  • Doğrusal model • Genel doğrusal model • Genelleştirilmiş doğrusal model
Doğrusal olmayan regresyon
Parametrik olmayan • Yarıparametrik • Logistik
Varyans analizi
Tek-yönlü varyans analizi • Kovaryans analizi • Bloklu tek-yönlü varyans analizi • Etki karışımı değişkeni
Çokdeğişkenli istatistik
Çokdeğişkenli regresyon • temel bileşenler · Faktör analizi • Kanonik korelesyon • Uygunluk analizi • Kümeleme analizi
Zaman serileri analizi
Yapısal model tanımlanması
Zaman serisi yapisal model ögeleri • Zaman serisi ögeleri saptanması • Zaman grafiği • Korrelogram
Zaman serileri kestirim teknik ve modelleri
Dekompozisyon • Trend uygulama kestirimi • Üssel düzgünleştirme • ARIMA modelleri • Box–Jenkins • Spektral yoğunluk kestirimi
Kestirim değerlendirmesi
Zaman seri kestirim değerlendirmesi
Sağkalım analizi
Sağkalım fonksiyonu • Kaplan–Meier • Log-sıra testi • Başarısızlık oranı • orantılı tehlikeler modeli
Kategori • Outline • Endeks
"https://tr.wikipedia.org/w/index.php?title=Lineer_regresyon&oldid=35733453" sayfasından alınmıştır
Kategoriler:
  • Parametrik istatistikler
  • Tahmin teorisi
Gizli kategoriler:
  • KB1 hataları: gereksiz parametre
  • Commons kategori bağlantısı Vikiveri'de tanımlı olan sayfalar
  • Webarşiv şablonu wayback bağlantıları
  • Sayfa en son 20.53, 27 Temmuz 2025 tarihinde değiştirildi.
  • Metin Creative Commons Atıf-AynıLisanslaPaylaş Lisansı altındadır ve ek koşullar uygulanabilir. Bu siteyi kullanarak Kullanım Şartlarını ve Gizlilik Politikasını kabul etmiş olursunuz.
    Vikipedi® (ve Wikipedia®) kâr amacı gütmeyen kuruluş olan Wikimedia Foundation, Inc. tescilli markasıdır.
  • Gizlilik politikası
  • Vikipedi hakkında
  • Sorumluluk reddi
  • Davranış Kuralları
  • Geliştiriciler
  • İstatistikler
  • Çerez politikası
  • Mobil görünüm
  • Wikimedia Foundation
  • Powered by MediaWiki
Lineer regresyon
Konu ekle