Devirli sayı - Vikipedi
İçeriğe atla
Ana menü
Gezinti
  • Anasayfa
  • Hakkımızda
  • İçindekiler
  • Rastgele madde
  • Seçkin içerik
  • Yakınımdakiler
Katılım
  • Deneme tahtası
  • Köy çeşmesi
  • Son değişiklikler
  • Dosya yükle
  • Topluluk portalı
  • Wikimedia dükkânı
  • Yardım
  • Özel sayfalar
Vikipedi Özgür Ansiklopedi
Ara
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç

Devirli sayı

  • Afrikaans
  • العربية
  • Català
  • Čeština
  • Ελληνικά
  • English
  • Español
  • Euskara
  • فارسی
  • Suomi
  • Français
  • Galego
  • עברית
  • İtaliano
  • 日本語
  • 한국어
  • Malti
  • Nederlands
  • Norsk bokmål
  • ਪੰਜਾਬੀ
  • Polski
  • Português
  • Русский
  • Simple English
  • Slovenčina
  • Slovenščina
  • தமிழ்
  • ไทย
  • Українська
  • اردو
  • Tiếng Việt
  • 中文
  • 粵語
Bağlantıları değiştir
  • Madde
  • Tartışma
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Araçlar
Eylemler
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Genel
  • Sayfaya bağlantılar
  • İlgili değişiklikler
  • Kalıcı bağlantı
  • Sayfa bilgisi
  • Bu sayfayı kaynak göster
  • Kısaltılmış URL'yi al
  • Karekodu indir
Yazdır/dışa aktar
  • Bir kitap oluştur
  • PDF olarak indir
  • Basılmaya uygun görünüm
Diğer projelerde
  • Vikiveri ögesi
Görünüm
Vikipedi, özgür ansiklopedi
Sonsuzluk işareti.

Devirli sayılar, aritmetikte kesirli sayıların bir gösterim şeklidir. Kesrin, belli bir rakamdan sonra tekrar edip, periyodikleşmesi sonucu oluşur. Örneğin; 1/3 = 0.33333... veya 0.3. Eğer bir devirli sayıda 0 rakamı devrediyorsa, bu sayı devirli sayı olarak sayılmamaktadır. Ayrıca, irrasyonel sayılar ve Pi sayısı da devirli sayı değildir. Çünkü bu sayılarda devreden bir kısım yoktur.

Sayı sistemleri
Karmaşık : C {\displaystyle :\;\mathbb {C} } {\displaystyle :\;\mathbb {C} }
Reel : R {\displaystyle :\;\mathbb {R} } {\displaystyle :\;\mathbb {R} }
Rasyonel : Q {\displaystyle :\;\mathbb {Q} } {\displaystyle :\;\mathbb {Q} }
Tam sayı : Z {\displaystyle :\;\mathbb {Z} } {\displaystyle :\;\mathbb {Z} }
Doğal : N {\displaystyle :\;\mathbb {N} } {\displaystyle :\;\mathbb {N} }
Sıfır: 0
Bir: 1
Asal sayılar
Bileşik sayılar
Negatif tam sayılar
Kesir
Sonlu ondalık sayı
İkili (sonlu ikili)
Devirli ondalık sayı
İrrasyonel
Cebirsel irrasyonel
Aşkın
Sanal
  • g
  • t
  • d
Sayılar
Sayılabilir küme
  • Doğal sayılar ( N {\displaystyle \scriptstyle \mathbb {N} } {\displaystyle \scriptstyle \mathbb {N} })
  • Tam sayı ( Z {\displaystyle \scriptstyle \mathbb {Z} } {\displaystyle \scriptstyle \mathbb {Z} })
  • Rasyonel sayılar ( Q {\displaystyle \scriptstyle \mathbb {Q} } {\displaystyle \scriptstyle \mathbb {Q} })
  • Çizilebilir sayılar
  • Cebirsel sayılar ( A {\displaystyle \scriptstyle \mathbb {A} } {\displaystyle \scriptstyle \mathbb {A} })
  • Periyotlar
  • Hesaplanabilir sayılar
  • Tanımlanabilir gerçel sayılar
  • Aritmetik sayılar
  • Gaussyen tam sayılar
Kompozisyon cebiri
  • Bölüm cebiri: Reel sayılar ( R {\displaystyle \scriptstyle \mathbb {R} } {\displaystyle \scriptstyle \mathbb {R} })
  • Karmaşık sayılar ( C {\displaystyle \scriptstyle \mathbb {C} } {\displaystyle \scriptstyle \mathbb {C} })
  • Dördey ( H {\displaystyle \scriptstyle \mathbb {H} } {\displaystyle \scriptstyle \mathbb {H} })
  • Sekizeyler ( O {\displaystyle \scriptstyle \mathbb {O} } {\displaystyle \scriptstyle \mathbb {O} })
Split türleri
  • R {\displaystyle \scriptstyle \mathbb {R} } {\displaystyle \scriptstyle \mathbb {R} } üzerinde:  • Split-karmaşık sayılar  • Split-dördeyler

C {\displaystyle \scriptstyle \mathbb {C} } {\displaystyle \scriptstyle \mathbb {C} } üzerinde:  • Split-sekizeyler  • Bikompleksler  • Bidördeyler  • Bisekizeyler

Diğer hiperkarmaşık sayılar
  • İkil sayılar
  • İkil dördeyler
  • İkil-karmaşık sayılar
  • Hiperbolik dördeyler
  • Onaltıyeyler ( S {\displaystyle \scriptstyle \mathbb {S} } {\displaystyle \scriptstyle \mathbb {S} })
  • Split-bidördeyler
  • Çoklukarmaşık sayılar
  • Geometrik cebir
    • Fiziksel uzay cebri
    • Uzay-zaman cebri
Diğer türler
  • Kardinal sayılar
  • Genişletilmiş gerçek sayılar
  • İrrasyonel sayılar
  • Bulanık sayılar
  • Hiper gerçek sayılar
  • Levi-Civita cismi
  • Surreal sayılar
  • Aşkın sayılar
  • Ordinal sayılar
  • p-sel sayılar (p-sel solenoidler)
  • Süperdoğal sayılar
  • Süper gerçek sayılar
İlgili diğer kavramlar
  • Çift ve tek sayılar
  • Devirli sayılar
  • Hiperbolik sayılar
  • Sonluötesi sayılar
  • Cayley–Dickson yapısı
  • Tessarine
  • Musean hipersayısı
  • ∞ (sonsuz)
  • Tam sayı dizileri
  • Büyük sayılar (Googol)
  • Matematik sabitleri
  • Nominal sayılar
  • Asal sayılar
  • Bileşik sayılar
  • Sanal sayılar
  • Arkadaş sayılar
  • Mükemmel sayılar
  • Eksik sayılar
  • Artık sayılar
  • Üçgensel sayılar
  • Karesel sayılar
  • Kare-üçgensel sayılar
  • Beşgensel sayılar
  • Dörtyüzlüsel sayılar
  • Harshad sayıları
  • Yarım tam sayılar
  • Palindromik sayılar
  • Lasa sayısı
  • Sınıflandırma
  • Liste Liste
Taslak simgesiMatematik ile ilgili bu madde taslak seviyesindedir. Madde içeriğini genişleterek Vikipedi'ye katkı sağlayabilirsiniz.
"https://tr.wikipedia.org/w/index.php?title=Devirli_sayı&oldid=29911127" sayfasından alınmıştır
Kategoriler:
  • Matematik taslakları
  • Gerçel sayılar
Gizli kategori:
  • Tüm taslak maddeler
  • Sayfa en son 05.19, 1 Temmuz 2023 tarihinde değiştirildi.
  • Metin Creative Commons Atıf-AynıLisanslaPaylaş Lisansı altındadır ve ek koşullar uygulanabilir. Bu siteyi kullanarak Kullanım Şartlarını ve Gizlilik Politikasını kabul etmiş olursunuz.
    Vikipedi® (ve Wikipedia®) kâr amacı gütmeyen kuruluş olan Wikimedia Foundation, Inc. tescilli markasıdır.
  • Gizlilik politikası
  • Vikipedi hakkında
  • Sorumluluk reddi
  • Davranış Kuralları
  • Geliştiriciler
  • İstatistikler
  • Çerez politikası
  • Mobil görünüm
  • Wikimedia Foundation
  • Powered by MediaWiki
Devirli sayı
Konu ekle