Euler teoremi - Vikipedi
İçeriğe atla
Ana menü
Gezinti
  • Anasayfa
  • Hakkımızda
  • İçindekiler
  • Rastgele madde
  • Seçkin içerik
  • Yakınımdakiler
Katılım
  • Deneme tahtası
  • Köy çeşmesi
  • Son değişiklikler
  • Dosya yükle
  • Topluluk portalı
  • Wikimedia dükkânı
  • Yardım
  • Özel sayfalar
Vikipedi Özgür Ansiklopedi
Ara
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç

Euler teoremi

  • العربية
  • Беларуская
  • Български
  • Català
  • Čeština
  • Dansk
  • Deutsch
  • Ελληνικά
  • English
  • Español
  • فارسی
  • Suomi
  • Français
  • Galego
  • עברית
  • हिन्दी
  • Hrvatski
  • Magyar
  • Bahasa Indonesia
  • Íslenska
  • İtaliano
  • 日本語
  • Қазақша
  • 한국어
  • Монгол
  • Nederlands
  • Polski
  • Português
  • Română
  • Русский
  • Simple English
  • Slovenščina
  • Српски / srpski
  • Svenska
  • Українська
  • Tiếng Việt
  • 中文
  • 粵語
Bağlantıları değiştir
  • Madde
  • Tartışma
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Araçlar
Eylemler
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Genel
  • Sayfaya bağlantılar
  • İlgili değişiklikler
  • Kalıcı bağlantı
  • Sayfa bilgisi
  • Bu sayfayı kaynak göster
  • Kısaltılmış URL'yi al
  • Karekodu indir
Yazdır/dışa aktar
  • Bir kitap oluştur
  • PDF olarak indir
  • Basılmaya uygun görünüm
Diğer projelerde
  • Vikiveri ögesi
Görünüm
Vikipedi, özgür ansiklopedi
Bu madde hiçbir kaynak içermemektedir. Lütfen güvenilir kaynaklar ekleyerek madde içeriğinin geliştirilmesine yardımcı olun. Kaynaksız içerik itiraz konusu olabilir ve kaldırılabilir.
Kaynak ara: "Euler teoremi" – haber · gazete · kitap · akademik · JSTOR
(Ocak 2019) (Bu şablonun nasıl ve ne zaman kaldırılması gerektiğini öğrenin)
Başlığın diğer anlamları için Euler (anlam ayrımı) sayfasına bakınız.

Eğer çokyüzlünün herhangi iki noktasını birleştiren doğru parçası yine bu yüzlünün içinde kalıyorsa, bu çokyüzlüye konveks (dışbükey) çokyüzlü denir. Konveks çokyüzlülerin yüz, ayrıt ve köşe sayıları arasında Euler Teoremi veya Euler Belirtkeni olarak bilinen bir bağıntı vardır.

Köşe Sayısı + Yüzey Sayısı - Ayrıt Sayısı = 2

Her bir çokyüzlü için K + Y − A {\displaystyle K+Y-A} {\displaystyle K+Y-A} sayısını hesaplarsak her zaman sonucun 2 olduğunu görürüz. Bu sadece Platon katıları için değil tüm konveks çokyüzlüler için geçerli bir özelliktir. (İspatı tümevarım ile yapılabilir)

Üçgenleme ve İndirgeme
Dörtyüzlünün bir düzleme yatırılması

Bu sayı, sınırların aynı sayıdaki bağlantılı parçadan oluşan bütün şekiller için aynıdır (örn. dairenin ya da sekiz şeklinin sınırı bir parçadan, rondelanınki ise iki parçadan oluşur). Bütün basit (yani deliksiz) çokgenler için Euler belirtkeni 1'e eşittir. Bu durum, herhangi bir şekil için üçgenleme işlemi yardımıyla gösterilebilir. Bu işlemde, şekil, köşeleri birleştiren yardımcı doğrular aracılığıyla üçgenlere bölünür. Daha sonra bu üçgenler, dışarıdan içeriye doğru, en son bir üçgen kalıncaya değin, birer birer ortadan kaldırılır; kalan son üçgenin belirtkeninin 1'e eşit olduğu kolaylıkla hesaplanabilir. Bu çizgi ekleme ve çıkarma işlemlerinin, özgün şeklin Euler belirtkenini değiştirmeyeceği açıktır, bu nedenle, özgün şeklin Euler belirtkeninin de 1'e eşit olduğu anlaşılır. Herhangi bir basit üç boyutlu çokyüzlünün Euler belirtkeninin 2'ye eşit olduğu, şeklin bir yüzünü ortadan kaldırıp geri kalan şekli bir düzleme yatırarak Euler belirtkeni 1 olan bir çokgen elde edilmesi yoluyla gösterilebilir, çünkü ortadan kaldırılan yüzün eklenmesiyle Euler belirtkeninin değeri 2'ye yükselecektir.

Euler belirtkeni -1 olan bölge

Delikli şekiller için Euler belirtkeni, deliklerin sayısı kadar azalır, çünkü her delik bir "eksik" (ortadan kaldırılmış) yüz olarak düşünülebilir. Cebirsel topolojide Euler-Poincarè formülü olarak bilinen daha genel bir bağıntı vardır. Bu formülde daha yüksek boyutlu soyut şekillere karşılık gelen terimler ile belirli bir şekil sınıfının şekildeki delik ve bükülme sayılarına bağlı olarak Euler belirtkeninin değerini veren terimler (bunlara Betti sayıları adı verilir) bulunur. Adını İsviçreli matematikçi Leonhard Euler'den alan Euler belirtkeninden, yalnızca beş çeşit düzgün (bütün yüzleri özdeş olan) çok yüzlü bulunabileceğini kanıtlamakta yararlanılmıştır.

Bazı bilim adamlarına göre, bu bağıntı Descartes'a aittir. Bunu ileri sürmelerinin sebebi de, Descartes'a ait olan bir teoremin doğrudan sonuçlarından birinin de yukarıdaki bağıntı olmasıdır. Ancak bu bağıntıyı ilk kez 1750 yılında açıkça ortaya atan kişi Euler olduğu bilinmektedir. Euler'in amacı, çokyüzlüleri sınıflandırabilmekti. Ancak bunu yapabilmek için sadece yüzlerin sayısı yeterli değildi; ayrıt köşe sayıları da incelenmeliydi. İşte Euler incelemeleri sırasında bu üç sayı arasındaki bağıntıyı keşfetti. Bağıntının kesin ispatı ise ancak 1847 yılında C. von Saudt tarafından yapılabildi.

  • g
  • t
  • d
Leonhard Euler
Çalışmalar
  • Mechanica
  • Introductio in analysin infinitorum
  • Institutiones calculi differentialis
  • Institutiones calculi integralis
  • Letters to a German Princess
Kavramlar
ve teoriler
  • Euler-Lagrange denklemi
  • Euler-Lotka denklemi
  • Euler-Maclaurin formülü
  • Euler-Maruyama yöntemi
  • Euler-Mascheroni sabiti
  • Euler-Poisson-Darboux denklemi
  • Euler-Rodrigues formülü
  • Euler-Tricomi denklemi
  • Euler sürekli kesirler formülü
  • Euler kritik yükü
  • Euler formülü
  • Euler dört-kare özdeşliği
  • Euler özdeşliği
  • Euler pompa ve tribün denklemi
  • Euler dönme teoremi
  • Euler kuvvetler toplamı varsayımı
  • Euler teoremi
  • Euler denklemleri (akışkanlar dinamiği)
  • Euler fonksiyonu
  • Euler yöntemi
  • Euler sayıları
  • Euler sayısı (fizik)
  • Euler-Bernoulli kiriş teorisi
  • Euler teoremi (geometri)
  • Euler spirali
  • Euler-Fuss denklemi
  • Euler dörtgen teoremi
Diğer
  • Aynı adı taşıyan
  • Euler Committee
  • Johann Euler
  • Johann Bernoulli (Bernoulli ailesi)
  • Georg Gsell
  • Merian ailesi
  • Basel Okulu (matematik)
"https://tr.wikipedia.org/w/index.php?title=Euler_teoremi&oldid=33912089" sayfasından alınmıştır
Kategoriler:
  • Matematik teoremleri
  • Leonhard Euler
Gizli kategori:
  • Kaynakları olmayan maddeler Ocak 2019
  • Sayfa en son 22.00, 28 Eylül 2024 tarihinde değiştirildi.
  • Metin Creative Commons Atıf-AynıLisanslaPaylaş Lisansı altındadır ve ek koşullar uygulanabilir. Bu siteyi kullanarak Kullanım Şartlarını ve Gizlilik Politikasını kabul etmiş olursunuz.
    Vikipedi® (ve Wikipedia®) kâr amacı gütmeyen kuruluş olan Wikimedia Foundation, Inc. tescilli markasıdır.
  • Gizlilik politikası
  • Vikipedi hakkında
  • Sorumluluk reddi
  • Davranış Kuralları
  • Geliştiriciler
  • İstatistikler
  • Çerez politikası
  • Mobil görünüm
  • Wikimedia Foundation
  • Powered by MediaWiki
Euler teoremi
Konu ekle