Sıral sayı - Vikipedi
İçeriğe atla
Ana menü
Gezinti
  • Anasayfa
  • Hakkımızda
  • İçindekiler
  • Rastgele madde
  • Seçkin içerik
  • Yakınımdakiler
Katılım
  • Deneme tahtası
  • Köy çeşmesi
  • Son değişiklikler
  • Dosya yükle
  • Topluluk portalı
  • Wikimedia dükkânı
  • Yardım
  • Özel sayfalar
Vikipedi Özgür Ansiklopedi
Ara
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç

İçindekiler

  • Giriş
  • 1 Tanım

Sıral sayı

  • Aragonés
  • العربية
  • Azərbaycanca
  • Català
  • Čeština
  • Чӑвашла
  • Cymraeg
  • Dansk
  • Deutsch
  • English
  • Esperanto
  • Español
  • Eesti
  • Euskara
  • فارسی
  • Suomi
  • Français
  • Galego
  • עברית
  • Magyar
  • Bahasa Indonesia
  • Ido
  • Íslenska
  • İtaliano
  • 日本語
  • Қазақша
  • 한국어
  • Lombard
  • Македонски
  • Bahasa Melayu
  • Nederlands
  • Polski
  • Português
  • Română
  • Русский
  • Slovenščina
  • Svenska
  • ไทย
  • Українська
  • ייִדיש
  • 中文
  • 文言
Bağlantıları değiştir
  • Madde
  • Tartışma
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Araçlar
Eylemler
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Genel
  • Sayfaya bağlantılar
  • İlgili değişiklikler
  • Kalıcı bağlantı
  • Sayfa bilgisi
  • Bu sayfayı kaynak göster
  • Kısaltılmış URL'yi al
  • Karekodu indir
Yazdır/dışa aktar
  • Bir kitap oluştur
  • PDF olarak indir
  • Basılmaya uygun görünüm
Diğer projelerde
  • Wikimedia Commons
  • Vikiveri ögesi
Görünüm
Vikipedi, özgür ansiklopedi
(Sıral sayılar sayfasından yönlendirildi)
Sıral sayıların tümevarımda nasıl kullanıldığını anlatan bir görsel

Sıral sayılar, soyut matematikte, tümevarımsal kümelerin bir genellemesi olarak George Contor tarafından verilmiştir.

Tanım

[değiştir | kaynağı değiştir]
Principia Mathematica tanımı

Bir sıral sayı burada denklik sınıflarıyla tanımlanır. Bir sıral sayı, iyi sıralı kümelerin sıral-denklik sınıflarının her birine denir.

Von Neumann tanımı

Bir S kümesi ancak, bu S kümesi tam sıralı ise ve her öğesi aynı zamanda kümenin altkümesi ise sıral sayıdır.

Taslak simgesiMatematik ile ilgili bu madde taslak seviyesindedir. Madde içeriğini genişleterek Vikipedi'ye katkı sağlayabilirsiniz.
  • g
  • t
  • d
Sayılar
Sayılabilir küme
  • Doğal sayılar ( N {\displaystyle \scriptstyle \mathbb {N} } {\displaystyle \scriptstyle \mathbb {N} })
  • Tam sayı ( Z {\displaystyle \scriptstyle \mathbb {Z} } {\displaystyle \scriptstyle \mathbb {Z} })
  • Rasyonel sayılar ( Q {\displaystyle \scriptstyle \mathbb {Q} } {\displaystyle \scriptstyle \mathbb {Q} })
  • Çizilebilir sayılar
  • Cebirsel sayılar ( A {\displaystyle \scriptstyle \mathbb {A} } {\displaystyle \scriptstyle \mathbb {A} })
  • Periyotlar
  • Hesaplanabilir sayılar
  • Tanımlanabilir gerçel sayılar
  • Aritmetik sayılar
  • Gaussyen tam sayılar
Kompozisyon cebiri
  • Bölüm cebiri: Reel sayılar ( R {\displaystyle \scriptstyle \mathbb {R} } {\displaystyle \scriptstyle \mathbb {R} })
  • Karmaşık sayılar ( C {\displaystyle \scriptstyle \mathbb {C} } {\displaystyle \scriptstyle \mathbb {C} })
  • Dördey ( H {\displaystyle \scriptstyle \mathbb {H} } {\displaystyle \scriptstyle \mathbb {H} })
  • Sekizeyler ( O {\displaystyle \scriptstyle \mathbb {O} } {\displaystyle \scriptstyle \mathbb {O} })
Split türleri
  • R {\displaystyle \scriptstyle \mathbb {R} } {\displaystyle \scriptstyle \mathbb {R} } üzerinde:  • Split-karmaşık sayılar  • Split-dördeyler

C {\displaystyle \scriptstyle \mathbb {C} } {\displaystyle \scriptstyle \mathbb {C} } üzerinde:  • Split-sekizeyler  • Bikompleksler  • Bidördeyler  • Bisekizeyler

Diğer hiperkarmaşık sayılar
  • İkil sayılar
  • İkil dördeyler
  • İkil-karmaşık sayılar
  • Hiperbolik dördeyler
  • Onaltıyeyler ( S {\displaystyle \scriptstyle \mathbb {S} } {\displaystyle \scriptstyle \mathbb {S} })
  • Split-bidördeyler
  • Çoklukarmaşık sayılar
  • Geometrik cebir
    • Fiziksel uzay cebri
    • Uzay-zaman cebri
Diğer türler
  • Kardinal sayılar
  • Genişletilmiş gerçek sayılar
  • İrrasyonel sayılar
  • Bulanık sayılar
  • Hiper gerçek sayılar
  • Levi-Civita cismi
  • Surreal sayılar
  • Aşkın sayılar
  • Ordinal sayılar
  • p-sel sayılar (p-sel solenoidler)
  • Süperdoğal sayılar
  • Süper gerçek sayılar
İlgili diğer kavramlar
  • Çift ve tek sayılar
  • Devirli sayılar
  • Hiperbolik sayılar
  • Sonluötesi sayılar
  • Cayley–Dickson yapısı
  • Tessarine
  • Musean hipersayısı
  • ∞ (sonsuz)
  • Tam sayı dizileri
  • Büyük sayılar (Googol)
  • Matematik sabitleri
  • Nominal sayılar
  • Asal sayılar
  • Bileşik sayılar
  • Sanal sayılar
  • Arkadaş sayılar
  • Mükemmel sayılar
  • Eksik sayılar
  • Artık sayılar
  • Üçgensel sayılar
  • Karesel sayılar
  • Kare-üçgensel sayılar
  • Beşgensel sayılar
  • Dörtyüzlüsel sayılar
  • Harshad sayıları
  • Yarım tam sayılar
  • Palindromik sayılar
  • Lasa sayısı
  • Sınıflandırma
  • Liste Liste
Otorite kontrolü Bunu Vikiveri'de düzenleyin
  • GND: 4172728-9
  • LCCN: sh85093216
  • NKC: ph123784
  • NLI: 987007538748305171
"https://tr.wikipedia.org/w/index.php?title=Sıral_sayı&oldid=35068854" sayfasından alınmıştır
Kategoriler:
  • Matematik taslakları
  • Sıral sayılar
Gizli kategoriler:
  • Tüm taslak maddeler
  • GND tanımlayıcısı olan Vikipedi maddeleri
  • LCCN tanımlayıcısı olan Vikipedi maddeleri
  • NKC tanımlayıcısı olan Vikipedi maddeleri
  • NLI tanımlayıcısı olan Vikipedi maddeleri
  • Sayfa en son 17.04, 2 Mart 2025 tarihinde değiştirildi.
  • Metin Creative Commons Atıf-AynıLisanslaPaylaş Lisansı altındadır ve ek koşullar uygulanabilir. Bu siteyi kullanarak Kullanım Şartlarını ve Gizlilik Politikasını kabul etmiş olursunuz.
    Vikipedi® (ve Wikipedia®) kâr amacı gütmeyen kuruluş olan Wikimedia Foundation, Inc. tescilli markasıdır.
  • Gizlilik politikası
  • Vikipedi hakkında
  • Sorumluluk reddi
  • Davranış Kuralları
  • Geliştiriciler
  • İstatistikler
  • Çerez politikası
  • Mobil görünüm
  • Wikimedia Foundation
  • Powered by MediaWiki
Sıral sayı
Konu ekle