Faz uzayı - Vikipedi
İçeriğe atla
Ana menü
Gezinti
  • Anasayfa
  • Hakkımızda
  • İçindekiler
  • Rastgele madde
  • Seçkin içerik
  • Yakınımdakiler
Katılım
  • Deneme tahtası
  • Köy çeşmesi
  • Son değişiklikler
  • Dosya yükle
  • Topluluk portalı
  • Wikimedia dükkânı
  • Yardım
  • Özel sayfalar
Vikipedi Özgür Ansiklopedi
Ara
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç

İçindekiler

  • Giriş
  • 1 Kuantum mekaniği
  • 2 Termodinamik ve istatistiksel mekanik
  • 3 Ayrıca bakınız

Faz uzayı

  • العربية
  • Català
  • Čeština
  • Dansk
  • Deutsch
  • English
  • Esperanto
  • Español
  • فارسی
  • Français
  • עברית
  • हिन्दी
  • Magyar
  • İtaliano
  • 日本語
  • 한국어
  • Lietuvių
  • Nederlands
  • Polski
  • Piemontèis
  • Português
  • Română
  • Русский
  • Svenska
  • Українська
  • Tiếng Việt
  • 中文
  • 粵語
Bağlantıları değiştir
  • Madde
  • Tartışma
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Araçlar
Eylemler
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Genel
  • Sayfaya bağlantılar
  • İlgili değişiklikler
  • Kalıcı bağlantı
  • Sayfa bilgisi
  • Bu sayfayı kaynak göster
  • Kısaltılmış URL'yi al
  • Karekodu indir
Yazdır/dışa aktar
  • Bir kitap oluştur
  • PDF olarak indir
  • Basılmaya uygun görünüm
Diğer projelerde
  • Wikimedia Commons
  • Vikiveri ögesi
Görünüm
Vikipedi, özgür ansiklopedi
Odak stabiliteli bir dinamik sistemin faz uzayı.

Matematik ve Fizik'te, bir faz uzayı içinde bir sistemin tüm olası durumlarının temsil edildiği bir uzaydır, sistemin her olası durumuna karşılık faz uzayında bir tek nokta vardır. Mekanik sistemler için, faz uzayı genellikle konum ve momentum değişkenlerinin tüm olası değerlerinden oluşur. Konum ve momentum değişkenlerinin zamana göre değişiminin bir fonksiyonunun çizimi bazen bir faz diyagramı olarak adlandırılır. Bununla beraber, bu terim genellikle fiziki bilimlerde kimyasal bir sistemin termodinamik fazlarının dengesini ve birbirlerine dönüşümünü, basıncın, sıcaklığın ve kompozisyonun bir fonksiyonu olarak gösteren bir diyagram için kullanılır.

Bir faz uzayında, her serbestlik derecesi veya sistem değişkeni çok boyutlu bir uzayda bir eksen olarak gösterilir. Sistemin olası her durumu için veya sistem değişkenlerinin değerlerinin izin verilen kombinasyonları için, çok boyutlu uzayda bir nokta işaretlenir. Bu işaretli noktaların temsili, sistemin durumunun zamana göre ilerlemesiyle benzerdir. Sonunda, faz diyagramı sistemin olabileceği her durumu temsil eder ve diyagramın şekli, aksi halde açık seçik olmayacak, sistemin niteliklerini aydınlatır. Bir faz uzayı birçok boyuttan oluşabilir. Örneğin, birçok molekülden oluşan bir gaz x, y ve z konumlarındaki her bir parçacığın, konumu, hızı ve diğer başka özellikleri için ayrı bir boyut gerektirebilir.

Klasik mekanikte faz uzayının koordinatları genel koordinatlar qi ve onların konjuge eşlenikleri pi'dir. Bu uzaydaki sistemlerin istatistiksel grubunun hareketi klasik istatistik mekanik tarafından incelenmektedir. Böyle bir sistemdeki noktaların yerel yoğunluğu Liouville teoremine (Hamiltonian) uymaktadır ve böylece sabit olarak alınabilir. Klasik mekanikte bir örnek sistem bağlamında, sistemin verilen herhangi bir zamandaki faz uzayı koordinatları sistemin tüm dinamik değişkenlerinden oluşmaktadır. Bu yüzden, sistemin geçmişte veya gelecekteki durumunu hesap etmek, Hamilton'un veya Lagrange'ın hareket denkleminin integrasyonuyla mümkündür. Dahası, faz uzayında her bir noktanın kesinlikle bir yörüngede bulunması sebebiyle, hiçbir şekilde faz yörüngeleri kesişmez.

Örneğin tek bir parçacığın bir boyutta hareket ettiği basit sistemlerde, iki serbestlik derecesi kadar az serbestlik derecesi olabilir, (tipik olarak, konum ve hız) ve faz tasvirinin bir krokisi sistemin dinamiği ile ilgili niteliksel bilgi verebilir, diyagramda gösterilen Van der Pol osilatörünün sınır-döngüsü gibi.

Van der Pol osilatörünün faz çizimi

Burada, yatay eksen konumu ve dikey eksende hızı verir. Sistem ilerledikçe, durumu faz diyagramındaki eksenlerden birini izler.

Kaos teorisinden klasik bir faz diyagramı örneği de "Lorenz attractor"ü ve "Mandelbrot set"idir.

Kuantum mekaniği

[değiştir | kaynağı değiştir]

Kuantum mekaniğinde, faz uzayının p ve q koordinatları bir Hilbert uzayındaki hermitian operatörlere dönüşürler, fakat alternatif olarak kendi klasik yorumlamalarını da kaybetmezler, bunların sağlanan fonksiyonları yeni cebirsel yollar oluştururlar(Moyal çarpımı, Groenewold'un 1946 yıldız çarpımı).

Her bir kuantum mekaniği observable'ı faz uzayında tek bir eşsiz fonksiyona veya dağılıma uyar ve Hermann Weyl tarafından belirtildiği (1927) ve John von Neumann (1931); Eugene Wigner (1932); H J Groenewold (1946) tarafından bunların büyük bir sentezinde belirtildiği gibi tersi de doğrudur.

José Enrique Moyal (1949) ile, bunlar kuantum mekaniğinin mantıksal otonom bir reformülasyonu olan faz-uzayı nicelemesini tamamlamıştır. Deformasyon nicelemesi ve geometrik niceleme bunun modern soyutlamalarındandır.

Termodinamik ve istatistiksel mekanik

[değiştir | kaynağı değiştir]

Termodinamikte ve istatistiksel mekanik bağlamında, faz uzayının iki anlamı vardır:

  • Klasik mekanikte olduğuyla aynı şekilde kullanılmaktadır. Eğer bir termodinamik sistem N parçacıktan oluşuyorsa, 6N boyutsal faz uzayındaki bir nokta o sistemdeki her bir parçacığın dinamik durumunu gösterir. Aynı şekilde, faz uzayındaki bir noktanın sistemin mikro durumu olduğu söylenir. N tipik olarak Avagadro sayısının tertibindedir, bu yüzden mikroskopik seviyedeki bir sistemi tanımlamak genellikle pratik değildir. Bu ise bizi faz uzayının farklı bir şekilde kullanımına yönlendirir.
  • Faz uzayı sistemin parametrelerinin basınç, sıcaklık gibi mikroskobik durumlarından oluştuğu bir uzayı anlatır. Örneğin, basınç-hacim veya entropi-sıcaklık diyagramının bu faz uzayının bir kısmını betimlediğini söyleyebiliriz. Bu faz uzayındaki bir nokta aynı şekilde makro durum olarak adlandırılır. Aynı makro durumda birden fazla mikro durum olabilir. Örneğin sabit bir sıcaklıkta, sistem mikroskopik seviyede birçok dinamik konfigürasyona sahip olabilir. Bu şekilde kullanıldığında, bir faz değişimi faz uzayının bir bölgesidir ki bu uzayda konu edilen sistem sıvı veya katı fazdadır.

Makro durumlardan daha fazla mikro durum bulunduğundan, ilk durumdaki faz uzayı genellikle ikinci durumdakilerden daha büyük boyutlardaki bir manifolddur. Açık şekilde, sistemin; moleküllerden veya atomik düzeyden sıcaklık veya sistem basıncına kadar her detayını kaydetmek için daha fazla değişken gerekmektedir.

Ayrıca bakınız

[değiştir | kaynağı değiştir]
  • Klasik mekanik
  • Boyut analizi
  • g
  • t
  • d
Diferansiyel denklemler
Sınıflandırma
İşlemler
  • Diferansiyel operatörü
  • Türevleme için gösterim
  • Adi
  • Kısmi
  • Diferansiyel-cebirsel
  • İntegro-diferansiyel
  • Kesirli
  • Doğrusal
  • Doğrusal olmayan
  • Holonomik
Değişkenlerin nitelikleri
  • Bağımlı ve bağımsız değişkenler
  • |Homojen
  • Homojen olmayan
  • İç içe geçmiş (Coupled)
  • Ayrışmış (Decoupled)
  • Mertebe (Order)
  • Derece (Degree)
  • Otonom
  • Tam diferansiyel denklem
  • Karmaşık diferansiyel denklem
Süreçlerle ilişkisi
  • Fark (ayrık analog)
  • Stokastik
    • Stokastik kısmi
  • Gecikme
Çözümler
Çözüm konuları
  • Picard–Lindelöf teoremi (varlık ve teklik)
  • Wronskiyen
  • Faz portresi
  • Faz uzayı
  • Lyapunov kararlılığı
  • Asimptotik kararlılık
  • Üstel kararlılık
  • Yakınsama oranı
  • Seri çözümleri
  • İntegral çözümleri
  • Numerik entegrasyon
  • Dirac delta fonksiyonu
Çözüm yöntemleri
  • Inspection
  • Değişkenlerin ayrılması
  • Belirsiz katsayılar metodu
  • Parametrelerin değişimi
  • İntegralleme çarpanı
  • İntegral dönüşümleri|
  • Euler yöntemi
  • Sonlu farklar yöntemi
  • Crank-Nicolson yöntemi
  • Runge-Kutta yöntemi
  • Sonlu elemanlar yöntemi
  • Sonlu hacim yöntemi
  • Galerkin yöntemi
  • Pertürbasyon teorisi
Uygulamalar
  • Adlandırılmış diferansiyel denklemler listesi
Matematikçiler
  • Isaac Newton
  • Gottfried Wilhelm Leibniz
  • Leonhard Euler
  • Jacob Bernoulli
  • Émile Picard
  • Józef Maria Hoene-Wroński
  • Ernst Lindelöf
  • Rudolf Lipschitz
  • Joseph-Louis Lagrange
  • Augustin-Louis Cauchy
  • John Crank
  • Phyllis Nicolson
  • Carl David Tolmé Runge
  • Martin Kutta
  • Sofya Kovalevskaya
Otorite kontrolü Bunu Vikiveri'de düzenleyin
  • BNF: cb12264248j (data)
  • GND: 4139912-2
  • LCCN: sh86000676
  • NLI: 987007539059805171
  • SUDOC: 03142614X
"https://tr.wikipedia.org/w/index.php?title=Faz_uzayı&oldid=33808359" sayfasından alınmıştır
Kategori:
  • Boyut analizi
Gizli kategoriler:
  • BNF tanımlayıcısı olan Vikipedi maddeleri
  • GND tanımlayıcısı olan Vikipedi maddeleri
  • LCCN tanımlayıcısı olan Vikipedi maddeleri
  • NLI tanımlayıcısı olan Vikipedi maddeleri
  • SUDOC tanımlayıcısı olan Vikipedi maddeleri
  • Sayfa en son 08.03, 17 Eylül 2024 tarihinde değiştirildi.
  • Metin Creative Commons Atıf-AynıLisanslaPaylaş Lisansı altındadır ve ek koşullar uygulanabilir. Bu siteyi kullanarak Kullanım Şartlarını ve Gizlilik Politikasını kabul etmiş olursunuz.
    Vikipedi® (ve Wikipedia®) kâr amacı gütmeyen kuruluş olan Wikimedia Foundation, Inc. tescilli markasıdır.
  • Gizlilik politikası
  • Vikipedi hakkında
  • Sorumluluk reddi
  • Davranış Kuralları
  • Geliştiriciler
  • İstatistikler
  • Çerez politikası
  • Mobil görünüm
  • Wikimedia Foundation
  • Powered by MediaWiki
Faz uzayı
Konu ekle