Sayısal entegrasyon - Vikipedi
İçeriğe atla
Ana menü
Gezinti
  • Anasayfa
  • Hakkımızda
  • İçindekiler
  • Rastgele madde
  • Seçkin içerik
  • Yakınımdakiler
Katılım
  • Deneme tahtası
  • Köy çeşmesi
  • Son değişiklikler
  • Dosya yükle
  • Topluluk portalı
  • Wikimedia dükkânı
  • Yardım
  • Özel sayfalar
Vikipedi Özgür Ansiklopedi
Ara
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç

İçindekiler

  • Giriş
  • 1 Kaynakça
  • 2 Dış bağlantılar

Sayısal entegrasyon

  • العربية
  • Asturianu
  • বাংলা
  • Bosanski
  • Català
  • Čeština
  • Чӑвашла
  • Deutsch
  • Ελληνικά
  • English
  • Español
  • Euskara
  • فارسی
  • Français
  • עברית
  • हिन्दी
  • Magyar
  • Հայերեն
  • İtaliano
  • 日本語
  • Қазақша
  • 한국어
  • Latina
  • Nederlands
  • Polski
  • Piemontèis
  • Português
  • Русский
  • Scots
  • Srpskohrvatski / српскохрватски
  • Simple English
  • Српски / srpski
  • Svenska
  • Українська
  • Vèneto
  • 中文
  • 粵語
Bağlantıları değiştir
  • Madde
  • Tartışma
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Araçlar
Eylemler
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Genel
  • Sayfaya bağlantılar
  • İlgili değişiklikler
  • Kalıcı bağlantı
  • Sayfa bilgisi
  • Bu sayfayı kaynak göster
  • Kısaltılmış URL'yi al
  • Karekodu indir
Yazdır/dışa aktar
  • Bir kitap oluştur
  • PDF olarak indir
  • Basılmaya uygun görünüm
Diğer projelerde
  • Wikimedia Commons
  • Vikiveri ögesi
Görünüm
Vikipedi, özgür ansiklopedi
(Numerik entegrasyon sayfasından yönlendirildi)
Değer için sayısal bir yaklaşımı hesaplamak amacıyla sayısal entegrasyon kullanılır. S {\displaystyle S} {\displaystyle S}, tarafından tanımlanan eğrinin altındaki alan f ( x ) {\displaystyle f(x)} {\displaystyle f(x)} .

Analizde, sayısal entegrasyon, belirli bir integralin sayısal değerini hesaplamak için geniş bir algoritma ailesini içerir ve bunun uzantısı olarak bazen diferansiyel denklemlerin sayısal çözümünü tanımlamak için de kullanılır.

Sayısal kareleme terimi (genellikle kareleme olarak kısaltılır), özellikle tek boyutlu integrallere uygulandığı şekliyle sayısal entegrasyon ile aşağı yukarı eşanlamlıdır. Bazı yazarlar birden fazla boyut üzerinden sayısal entegrasyona küp şeklinde atıfta bulunur. Bazıları da daha yüksek boyutlu entegrasyonu dahil etmek amacıyla karelemeyi alır.

Sayısal entegrasyondaki temel problem belirli bir integralin yaklaşık çözümünü hesaplamaktır.

∫ a b f ( x ) d x {\displaystyle \int _{a}^{b}f(x)\,dx} {\displaystyle \int _{a}^{b}f(x)\,dx}

Eğer f(x), az sayıda boyutta tümleşik düzgün bir fonksiyonsa ve integral alanı sınırlıysa, integrali istenen hassasiyete yaklaştırmak için birçok yöntem vardır.

Kaynakça

[değiştir | kaynağı değiştir]
  • Philip J. Davis ve Philip Rabinowitz, Sayısal İntegrasyon Yöntemleri .
  • George E. Forsythe, Michael A. Malcolm ve Cleve B. Moler, Matematiksel Hesaplamalar için Bilgisayar Yöntemleri . Englewood Cliffs, NJ: Prentice-Hall, 1977. (Bölüm 5'e bakın. )
  • Josef Stoer ve Roland Bulirsch, Nümerik Analize Giriş . New York: Springer-Verlag, 1980. (Bölüm 3'e bakın. )
  • Boyer, CB, Matematik Tarihi, 2. baskı. rev. Uta C. Merzbach tarafından, New York: Wiley, 19890-471-09763-2 (1991 pbk ed.0-471-54397-7ISBN 0-471-54397-7 ).
  • Eves, Howard, Matematik Tarihine Giriş, Saunders, 1990,0-03-029558-0,

Dış bağlantılar

[değiştir | kaynağı değiştir]
Wikimedia Commons'ta Sayısal entegrasyon ile ilgili ortam dosyaları mevcuttur.
  • Entegrasyon: Bütünsel Sayısal Yöntemler Enstitüsünde Arka Plan, Simülasyonlar vb. 1 Eylül 2006 tarihinde Wayback Machine sitesinde arşivlendi.
  • Wolfram Mathworld'den Lobatto Quadrature 5 Nisan 2023 tarihinde Wayback Machine sitesinde arşivlendi.
  • Encyclopedia of Mathematics'ten Lobatto kareleme formülü 21 Şubat 2020 tarihinde Wayback Machine sitesinde arşivlendi.
  • Ücretsiz Tracker Bileşen Kitaplığı içinde birçok kareleme ve küpleme formülünün uygulamaları 25 Ağustos 2020 tarihinde Wayback Machine sitesinde arşivlendi. .
  • SageMath Çevrimiçi Entegratör 26 Mayıs 2023 tarihinde Wayback Machine sitesinde arşivlendi.
  • g
  • t
  • d
İntegraller
İntegral türleri
  • Riemann integrali
  • Lebesgue integrali
  • Burkill integrali
  • Bochner integrali
  • Daniell integrali
  • Darboux integrali
  • Henstock-Kurzweil integrali
  • Haar integrali
  • Hellinger integrali
  • Khinchin integrali
  • Kolmogorov integrali
  • Lebesgue-Stieltjes integrali
  • Pettis integral
  • Pfeffer integrali
  • Riemann-Stieltjes integrali
  • Düzenlenmiş integral
İntegrasyon teknikleri
  • Yerine koyma
    • Trigonometrik
    • Euler
    • Weierstrass
  • Parçalara göre
  • Kısmi kesirler
  • Euler formülü
  • Ters fonksiyonlar
  • Değişen derece
  • İndirgeme formülleri
  • Parametrik türevler
  • İntegral işareti altında farklılaşma
  • Laplace dönüşümü
  • Kontur integrasyonu
  • Laplace yöntemi
  • Sayısal integrasyon
    • Simpson kuralı
    • Trapezoidal kural
  • Risch algoritması
Genelleştirilmiş integraller
  • Gauss integrali
  • Dirichlet integrali
  • Fermi-Dirac integrali
    • tam
    • eksik
  • Bose-Einstein integrali
  • Frullani integrali
  • Kuantum alan teorisinde ortak integraller
Stokastik integraller
  • Itô integrali
  • Russo–Vallois integrali
  • Stratonovich integrali
  • Skorokhod integrali
Diğer
  • Basel problemi
  • Euler–Maclaurin formülü
  • Cebrail'in borusu
  • Integration Bee
  • 22/7'nin π değerini aştığının kanıtı
  • Hacimler
    • Çamaşır makineleri
    • Kabuklar
  • g
  • t
  • d
Diferansiyel denklemler
Sınıflandırma
İşlemler
  • Diferansiyel operatörü
  • Türevleme için gösterim
  • Adi
  • Kısmi
  • Diferansiyel-cebirsel
  • İntegro-diferansiyel
  • Kesirli
  • Doğrusal
  • Doğrusal olmayan
  • Holonomik
Değişkenlerin nitelikleri
  • Bağımlı ve bağımsız değişkenler
  • |Homojen
  • Homojen olmayan
  • İç içe geçmiş (Coupled)
  • Ayrışmış (Decoupled)
  • Mertebe (Order)
  • Derece (Degree)
  • Otonom
  • Tam diferansiyel denklem
  • Karmaşık diferansiyel denklem
Süreçlerle ilişkisi
  • Fark (ayrık analog)
  • Stokastik
    • Stokastik kısmi
  • Gecikme
Çözümler
Çözüm konuları
  • Picard–Lindelöf teoremi (varlık ve teklik)
  • Wronskiyen
  • Faz portresi
  • Faz uzayı
  • Lyapunov kararlılığı
  • Asimptotik kararlılık
  • Üstel kararlılık
  • Yakınsama oranı
  • Seri çözümleri
  • İntegral çözümleri
  • Numerik entegrasyon
  • Dirac delta fonksiyonu
Çözüm yöntemleri
  • Inspection
  • Değişkenlerin ayrılması
  • Belirsiz katsayılar metodu
  • Parametrelerin değişimi
  • İntegralleme çarpanı
  • İntegral dönüşümleri|
  • Euler yöntemi
  • Sonlu farklar yöntemi
  • Crank-Nicolson yöntemi
  • Runge-Kutta yöntemi
  • Sonlu elemanlar yöntemi
  • Sonlu hacim yöntemi
  • Galerkin yöntemi
  • Pertürbasyon teorisi
Uygulamalar
  • Adlandırılmış diferansiyel denklemler listesi
Matematikçiler
  • Isaac Newton
  • Gottfried Wilhelm Leibniz
  • Leonhard Euler
  • Jacob Bernoulli
  • Émile Picard
  • Józef Maria Hoene-Wroński
  • Ernst Lindelöf
  • Rudolf Lipschitz
  • Joseph-Louis Lagrange
  • Augustin-Louis Cauchy
  • John Crank
  • Phyllis Nicolson
  • Carl David Tolmé Runge
  • Martin Kutta
  • Sofya Kovalevskaya
Otorite kontrolü Bunu Vikiveri'de düzenleyin
  • GND: 4172168-8
  • LCCN: sh85093246
  • NDL: 00571772
"https://tr.wikipedia.org/w/index.php?title=Sayısal_entegrasyon&oldid=33894502" sayfasından alınmıştır
Kategori:
  • Sayısal analiz
Gizli kategoriler:
  • Commons kategori bağlantısı Vikiveri'den çekilen sayfalar
  • Webarşiv şablonu wayback bağlantıları
  • GND tanımlayıcısı olan Vikipedi maddeleri
  • LCCN tanımlayıcısı olan Vikipedi maddeleri
  • NDL tanımlayıcısı olan Vikipedi maddeleri
  • Sayfa en son 11.07, 26 Eylül 2024 tarihinde değiştirildi.
  • Metin Creative Commons Atıf-AynıLisanslaPaylaş Lisansı altındadır ve ek koşullar uygulanabilir. Bu siteyi kullanarak Kullanım Şartlarını ve Gizlilik Politikasını kabul etmiş olursunuz.
    Vikipedi® (ve Wikipedia®) kâr amacı gütmeyen kuruluş olan Wikimedia Foundation, Inc. tescilli markasıdır.
  • Gizlilik politikası
  • Vikipedi hakkında
  • Sorumluluk reddi
  • Davranış Kuralları
  • Geliştiriciler
  • İstatistikler
  • Çerez politikası
  • Mobil görünüm
  • Wikimedia Foundation
  • Powered by MediaWiki
Sayısal entegrasyon
Konu ekle