Diferansiyel denklem - Vikipedi
İçeriğe atla
Ana menü
Gezinti
  • Anasayfa
  • Hakkımızda
  • İçindekiler
  • Rastgele madde
  • Seçkin içerik
  • Yakınımdakiler
Katılım
  • Deneme tahtası
  • Köy çeşmesi
  • Son değişiklikler
  • Dosya yükle
  • Topluluk portalı
  • Wikimedia dükkânı
  • Yardım
  • Özel sayfalar
Vikipedi Özgür Ansiklopedi
Ara
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç

İçindekiler

  • Giriş
  • 1 Çeşitleri
  • 2 Diferansiyel Denklemlerin Tarihi
  • 3 Uygulamalar
  • 4 Yazılım
  • 5 Dış bağlantılar
  • 6 Kaynakça

Diferansiyel denklem

  • Afrikaans
  • Alemannisch
  • Aragonés
  • العربية
  • অসমীয়া
  • Asturianu
  • Azərbaycanca
  • Башҡортса
  • Žemaitėška
  • Беларуская
  • Беларуская (тарашкевіца)
  • Български
  • বাংলা
  • Bosanski
  • Català
  • کوردی
  • Čeština
  • Чӑвашла
  • Cymraeg
  • Dansk
  • Deutsch
  • Ελληνικά
  • English
  • Esperanto
  • Español
  • Eesti
  • Euskara
  • فارسی
  • Suomi
  • Français
  • Gaeilge
  • 贛語
  • Galego
  • עברית
  • हिन्दी
  • Fiji Hindi
  • Hrvatski
  • Magyar
  • Հայերեն
  • Արեւմտահայերէն
  • Bahasa Indonesia
  • Ido
  • Íslenska
  • İtaliano
  • 日本語
  • Patois
  • ქართული
  • Qaraqalpaqsha
  • Қазақша
  • ភាសាខ្មែរ
  • 한국어
  • Kurdî
  • Latina
  • Лезги
  • Lombard
  • Lietuvių
  • Latviešu
  • Македонски
  • മലയാളം
  • Bahasa Melayu
  • Malti
  • Nederlands
  • Norsk nynorsk
  • Norsk bokmål
  • Occitan
  • ਪੰਜਾਬੀ
  • Polski
  • Piemontèis
  • پنجابی
  • Português
  • Română
  • Русский
  • Sicilianu
  • Scots
  • Srpskohrvatski / српскохрватски
  • සිංහල
  • Simple English
  • Slovenčina
  • Slovenščina
  • Shqip
  • Српски / srpski
  • Svenska
  • Kiswahili
  • தமிழ்
  • ไทย
  • Türkmençe
  • Tagalog
  • Українська
  • اردو
  • Oʻzbekcha / ўзбекча
  • Vepsän kel’
  • Tiếng Việt
  • Winaray
  • 吴语
  • ייִדיש
  • 中文
  • 閩南語 / Bân-lâm-gí
  • 粵語
Bağlantıları değiştir
  • Madde
  • Tartışma
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Araçlar
Eylemler
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Genel
  • Sayfaya bağlantılar
  • İlgili değişiklikler
  • Kalıcı bağlantı
  • Sayfa bilgisi
  • Bu sayfayı kaynak göster
  • Kısaltılmış URL'yi al
  • Karekodu indir
Yazdır/dışa aktar
  • Bir kitap oluştur
  • PDF olarak indir
  • Basılmaya uygun görünüm
Diğer projelerde
  • Wikimedia Commons
  • Vikiveri ögesi
Görünüm
Vikipedi, özgür ansiklopedi
Kalkülüs
Kalkülüs
Temel
  • Kalkülüsün temel teoremi
  • Limit
  • Süreklilik
  • Rolle teoremi
  • Ortalama değer teoremi
  • Ters fonksiyon teoremi
Türev
  • Çarpma kuralı
  • Bölme kuralı
  • Zincir kuralı
  • Örtülü türev
  • Taylor teoremi
  • Bağımlı oranlar
  • Türev listesi
  • L'Hopital kuralı
  • Diferansiyel denklemler
İntegral
  • İntegral tablosu
  • Has olmayan integral
  • İntegralle hacim hesabı

İntegral Alma Yöntemleri:

  • Kısmi İntegrasyon
  • değişken değiştirme
Çok değişkenli
  • Kısmi türev
  • Çokkatlı integral
  • Çizgi integrali
  • Yüzey integrali
  • Hacim integrali
Vektör hesabı
  • Matris
  • Tensör
  • Jacobi
  • Hesse
  • Gradyan
  • g
  • t
  • d

Matematikte, diferansiyel denklem, bir ya da birden fazla fonksiyonu ve bunların türevlerini ilişkilendiren denklemdir.[1] Fizik, kimya, mühendislik, biyoloji ve ekonomi alanlarında matematiksel modeller genellikle diferansiyel denklemler kullanılarak ifade edilirler. Bu denklemlerde, fonksiyonlar genellikle fiziksel ya da finansal değerlere, fonksiyon türevleriyse değerlerin değişim hızlarına denk gelir.

Çeşitleri

[değiştir | kaynağı değiştir]

Diferansiyel denklemler temel olarak iki kola ayrılırlar:

  1. Normal diferansiyel denklemler (veya adi diferansiyel denklemler)
  2. Kısmi diferansiyel denklemler .

Diferansiyel denklemler bilinmeyenlerin birbirleri ve katsayılarla ilgili konumlarına göre: Doğrusal diferansiyel denklemler, Doğrusal olmayan diferansiyel denklemler olarak da gruplanmaktadır. Doğrusal denklemlerin teorisi gelişmiş olmasına rağmen doğrusal olmayan denklemlerin keyfiyet analizi zordur ve bazen mümkün değildir. Bu durumlarda sayısal analiz teknikleri uygulanır.

Kısmi diferansiyel denklemler, katsayıların durumlarına ve zamana ait türevin mevcudiyetine göre

  1. Eliptik diferansiyel denklemler
  2. Parabolik diferansiyel denklemler
  3. Hiperbolik diferansiyel denklemler şeklinde alt gruplara ayrılırlar.

Son iki tip denklem, zamana ait türevin mevcudiyetinden ötürü evrimsel olarak isimlendirilir.

Modern uygulamaların zorlaması ile ortaya çıkan:

  1. Stokastik diferansiyel denklemler
  2. Gecikmeli diferansiyel denklemler

tiplerindeki denklemler yukardakilerden farklı olarak değerlendirilebilirler.

Sabit ortamlarda denklemler verilere göre:

  1. Başlangıç değer
  2. Sınır değer

şeklinde sınıflandırılırlar. Sabit olmayan bir ortamda tanımlı denklemlere Serbest sınır değer problemleri veya Hareketli sınır değer problemleri denir.

Birçok denklemden oluşan ilişkilere denklem sistemi adı verilir.

Diferansiyel Denklemlerin Tarihi

[değiştir | kaynağı değiştir]

Diferansiyel denklemler, Isaac Newton ve Gottfried Leibniz'in Kalkülüs'ü ortaya atması ile başlar. Isaac Newton, 1671 yılında yayınlanan Methodus fluxionum et Serierum Infinitarum[2] isimli kitabının ikinci bölümünde üç tip diferansiyel denklem tanımlamıştır:

  • d y d x = f ( x ) {\displaystyle {\frac {dy}{dx}}=f(x)} {\displaystyle {\frac {dy}{dx}}=f(x)}
  • d y d x = f ( x , y ) {\displaystyle {\frac {dy}{dx}}=f(x,y)} {\displaystyle {\frac {dy}{dx}}=f(x,y)}
  • x 1 ∂ y ∂ x 1 + x 2 ∂ y ∂ x 2 = y {\displaystyle x_{1}{\frac {\partial y}{\partial x_{1}}}+x_{2}{\frac {\partial y}{\partial x_{2}}}=y} {\displaystyle x_{1}{\frac {\partial y}{\partial x_{1}}}+x_{2}{\frac {\partial y}{\partial x_{2}}}=y}

Tüm durumlarda y {\displaystyle y} {\displaystyle y}, x {\displaystyle x} {\displaystyle x}'in bilinmeyen bir fonksiyonu (ya da x 1 {\displaystyle x_{1}} {\displaystyle x_{1}}ve x 2 {\displaystyle x_{2}} {\displaystyle x_{2}}'nin) ve f {\displaystyle f} {\displaystyle f} verilmiş bir fonksiyondur.

Isaac Newton bu ve diğer örnekleri kitabında Sonsuz seriler yöntemini kullanarak çözer ve çözümlerin yalnız bir tane olup olmadığını sorgular.

Jakob Bernouilli 1695 yılında Bernoulli diferansiyel denklemi'ni ortaya attı[3] ve bu denklem şu formda bir Adi diferansiyel denklemdir:

y ′ + P ( x ) y = Q ( x ) y n {\displaystyle y\prime +P(x)y=Q(x)y^{n}} {\displaystyle y\prime +P(x)y=Q(x)y^{n}}

Sonraki yıllarda Gottfried Leibniz bu denklemin çözümünü, denklemi basitleştirerek bulmuştur.[4]

Isı denklemi çözülerek oluşturulan bir pompa gövdesindeki ısı transferinin görselleştirilmesi.

Isı gövdenin içinde üretilir ve sınırda soğutularak sabit durumlu bir sıcaklık dağılımı sağlanır.

Uygulamalar

[değiştir | kaynağı değiştir]

Diferansiyel denklemlerin etüdü, soyut ve uygulamalı matematik, fizik ve mühendislikte geniş bir alandır. Bu bilim dallarınının tümü, çeşitli türlerdeki diferansiyel denklemlerin özellikleri ile ilgilidir.

Soyut matematik, çözümlerin varlığına ve benzersizliğine odaklanırken, uygulamalı matematik, çözümlere yaklaşım yöntemlerinin kesin gerekçesini vurgular.

Diferansiyel denklemler, göksel hareketten köprü tasarımına ve nöronlar arasındaki etkileşimlere kadar neredeyse her fiziksel, teknik veya biyolojik sürecin modellenmesinde önemli bir rol oynar.

Gerçek hayat problemlerini çözmek için kullanılanlar gibi diferansiyel denklemler, mutlaka doğrudan çözülebilir olmayabilir, yani kapalı biçimli çözümleri yoktur. Bunun yerine, çözümler sayısal yöntemler kullanılarak yaklaşık olarak bulunabilir.

Fizik ve kimya ile ilgili birçok temel yasa diferansiyel denklemlerle formülleştirilebilir. Biyoloji ve ekonomi'de karmaşık sistemlerin davranışını model için diferansiyel denklemler kullanılır.

Diferansiyel denklemlerin matematiksel teorisi, ilk olarak denklemlerin ortaya çıktığı ve sonuçların uygulama bulduğu bilimlerle birlikte gelişti. Ancak, bazen oldukça farklı bilimsel alanlardan kaynaklanan çeşitli problemler, aynı diferansiyel denklemlere yol açabilir. Bu olduğunda, denklemlerin arkasındaki matematiksel teori, çeşitli doğa olaylarının arkasındaki birleştirici bir ilke olarak görülebilir. Örneğin atmosferdeki ışık ve sesin ve bir havuz yüzeyinde dalgaların yayılmasını düşünün. Hepsi aynı ikinci dereceden kısmi diferansiyel denklem olan dalga denklemi ile tanımlanabilir, bu ise ışık ve sesin dalga şekillerini sudaki bilinen dalgalar gibi düşünmemizi sağlar. Teorisi Joseph Fourier tarafından geliştirilen ısı iletimi, başka bir ikinci dereceden kısmi diferansiyel denklem olan ısı denklemi ile ifade edilir. Görünüşe göre farklı görünen birçok difüzyon işleminin aynı denklemle tanımlandığı ortaya çıkmıştır örn. finanstaki Black–Scholes denklemi, ısı denklemi ile ilişkilidir.

Doğada ve teknolojide çok sayıda doğa olayı, diferansiyel denklemler ve bunlara dayalı matematiksel modeller ile tanımlanabilir. Bazı tipik örnekler şunlardır:

  • Birçok fiziksel teori, diferansiyel denklemlere dayanır: Newton mekaniği'nde hareket denklemleri veya salınımlar, yük bileşenlerinin davranışı, elektrodinamik, Maxwell denklemleri, kuantum mekaniği Schrödinger denklemi ile ifade edilir.
  • Astronomi'de gök cisimlerinin yörüngeleri ve güneşin içindeki türbülans,
  • Biyoloji'de büyüme, akışkanlar veya kaslar veya Evrim teorisindeki süreçler.
  • Kimya'da reaksiyonların kinetiği,
  • Elektrik mühendisliği'nde elektrik devreleri'nin enerji depolama elemanlarıyla davranışı,
  • Diferansiyel geometri'de yüzeylerin davranışı,
  • Akışkanlar mekaniği'nde bu akışların davranışı,
  • Ekonomi'de ekonomik büyüme süreçlerinin analizi.
  • Bilişim'de, resim-restorasyonu (resimlerden yazı veya logoların hesaplanması)[5]

Diferansiyel denklemler alanı matematiğe belirleyici bir ivme kazandırdı. Güncel matematik araştırmalarının birçok bölümü farklı türdeki diferansiyel denklemlerin varlığı, tekliği ve kararlılık teorisi üzerinedir.

Yazılım

[değiştir | kaynağı değiştir]

Maple:[6] dsolve

Xcas:[7] desolve(y'=k*y, y)

Dış bağlantılar

[değiştir | kaynağı değiştir]
Vikikitap
Vikikitap
Vikikitapta bu konu hakkında daha fazla bilgi var:
Linear Algebra
  • MIT Professor Arthur Mattuck's Differential Equations Course Homepage 2 Ocak 2016 tarihinde Wayback Machine sitesinde arşivlendi.: MIT Course Website Kursu ve Türkçe tercümesi 5 Mart 2016 tarihinde Wayback Machine sitesinde arşivlendi..

Kaynakça

[değiştir | kaynağı değiştir]
  1. ^ Dennis G. Zill (15 Mart 2012). A First Course in Differential Equations with Modeling Applications. Cengage Learning. ISBN 1-285-40110-7. 17 Ocak 2020 tarihinde kaynağından arşivlendi. Erişim tarihi: 27 Ağustos 2020. 
  2. ^ Newton, Isaac. (c.1671). Methodus Fluxionum et Serierum Infinitarum (The Method of Fluxions and Infinite Series), published in 1736 [Opuscula, 1744, Vol. I. p. 66].
  3. ^ Bernoulli, Jacob (1695), "Explicationes, Annotationes & Additiones ad ea, quae in Actis sup. de Curva Elastica, Isochrona Paracentrica, & Velaria, hinc inde memorata, & paratim controversa legundur; ubi de Linea mediarum directionum, alliisque novis", Acta Eruditorum
  4. ^ Hairer, Ernst; Nørsett, Syvert Paul; Wanner, Gerhard (1993), Solving ordinary differential equations I: Nonstiff problems, Berlin, New York: Springer-Verlag, ISBN 978-3-540-56670-0
  5. ^ Peterson, Ivars (2002). "Filling in Blanks". Science News. Society for Science &#38. 161 (19): 299-300. doi:10.2307/4013521. 27 Haziran 2009 tarihinde kaynağından arşivlendi11 Mayıs 2008. 
  6. ^ "dsolve". 23 Kasım 2013 tarihinde kaynağından arşivlendi. 
  7. ^ "Symbolic algebra and Mathematics with Xcas" (PDF). 29 Temmuz 2014 tarihinde kaynağından arşivlendi (PDF). 
  • g
  • t
  • d
Diferansiyel denklemler
Sınıflandırma
İşlemler
  • Diferansiyel operatörü
  • Türevleme için gösterim
  • Adi
  • Kısmi
  • Diferansiyel-cebirsel
  • İntegro-diferansiyel
  • Kesirli
  • Doğrusal
  • Doğrusal olmayan
  • Holonomik
Değişkenlerin nitelikleri
  • Bağımlı ve bağımsız değişkenler
  • |Homojen
  • Homojen olmayan
  • İç içe geçmiş (Coupled)
  • Ayrışmış (Decoupled)
  • Mertebe (Order)
  • Derece (Degree)
  • Otonom
  • Tam diferansiyel denklem
  • Karmaşık diferansiyel denklem
Süreçlerle ilişkisi
  • Fark (ayrık analog)
  • Stokastik
    • Stokastik kısmi
  • Gecikme
Çözümler
Çözüm konuları
  • Picard–Lindelöf teoremi (varlık ve teklik)
  • Wronskiyen
  • Faz portresi
  • Faz uzayı
  • Lyapunov kararlılığı
  • Asimptotik kararlılık
  • Üstel kararlılık
  • Yakınsama oranı
  • Seri çözümleri
  • İntegral çözümleri
  • Numerik entegrasyon
  • Dirac delta fonksiyonu
Çözüm yöntemleri
  • Inspection
  • Değişkenlerin ayrılması
  • Belirsiz katsayılar metodu
  • Parametrelerin değişimi
  • İntegralleme çarpanı
  • İntegral dönüşümleri|
  • Euler yöntemi
  • Sonlu farklar yöntemi
  • Crank-Nicolson yöntemi
  • Runge-Kutta yöntemi
  • Sonlu elemanlar yöntemi
  • Sonlu hacim yöntemi
  • Galerkin yöntemi
  • Pertürbasyon teorisi
Uygulamalar
  • Adlandırılmış diferansiyel denklemler listesi
Matematikçiler
  • Isaac Newton
  • Gottfried Wilhelm Leibniz
  • Leonhard Euler
  • Jacob Bernoulli
  • Émile Picard
  • Józef Maria Hoene-Wroński
  • Ernst Lindelöf
  • Rudolf Lipschitz
  • Joseph-Louis Lagrange
  • Augustin-Louis Cauchy
  • John Crank
  • Phyllis Nicolson
  • Carl David Tolmé Runge
  • Martin Kutta
  • Sofya Kovalevskaya
  • g
  • t
  • d
Matematiğin genel alanları
  • Matematik tarihi
  • Matematiğin ana hatları
  • Matematiğin dalları
Analiz
  • Diferansiyel denklemler
  • Fonksiyonel analiz
  • Gerçel analiz
  • Harmonik analiz
  • Hiperkompleks analiz
  • Kalkülüs
  • Karmaşık analiz
  • Ölçü teorisi
Ayrık matematik
  • Çizge teorisi
  • Kombinatorik
  • Sıra teorisi
Cebir
  • Basit cebir
  • Çokludoğrusal cebir
  • Değişmeli cebir
  • Doğrusal cebir
  • Evrensel cebir
  • Grup teorisi
  • Homolojik cebir
  • Soyut cebir
Geometri
  • Analitik geometri
  • Aritmetik geometri
  • Ayrık geometri
  • Cebirsel geometri
  • Diferansiyel geometri
  • Öklid geometrisi
  • Sonlu geometri
Hesaplamalı matematik
  • Algoritmalar teorisi
  • Bilgisayar bilimi
  • Hesaplamalı karmaşıklık teorisi
  • Nümerik analiz
  • Optimizasyon
  • Sembolik hesap
Matematiğin temelleri
  • Bilgi teorisi
  • Kategori teorisi
  • Küme teorisi
  • Matematik felsefesi
  • Matematiksel mantık
  • Tip teorisi
Sayılar teorisi
  • Analitik sayı teorisi
  • Aritmetik
  • Cebirsel sayı teorisi
  • Diyofant geometrisi
Topoloji
  • Cebirsel topoloji
  • Diferansiyel topoloji
  • Genel topoloji
  • Geometrik topoloji
  • Homotopi teorisi
Uygulamalı matematik
  • İstatistik
  • Matematiksel biyoloji
  • Matematiksel ekonomi
  • Finansal matematik
  • Matematiksel fizik
  • Matematiksel kimya
  • Matematiksel psikoloji
  • Matematiksel sosyoloji
  • Mühendislik matematiği
  • Olasılık teorisi
  • Sistem bilimi
    • Kontrol teorisi
    • Oyun teorisi
    • Yöneylem araştırması
İlişkin konular
  • Matematikçiler
    • Matematikçi listeleri
  • Matematik eğitimi
  • Matematikçiler hakkındaki filmler
Otorite kontrolü Bunu Vikiveri'de düzenleyin
  • BNF: cb133183122 (data)
  • GND: 4012249-9
  • LCCN: sh85037890
  • NDL: 00560651
  • NKC: ph119444
  • NLI: 987007553020305171
"https://tr.wikipedia.org/w/index.php?title=Diferansiyel_denklem&oldid=35625651" sayfasından alınmıştır
Kategori:
  • Diferansiyel denklemler
Gizli kategoriler:
  • ISBN sihirli bağlantısını kullanan sayfalar
  • Webarşiv şablonu wayback bağlantıları
  • BNF tanımlayıcısı olan Vikipedi maddeleri
  • GND tanımlayıcısı olan Vikipedi maddeleri
  • LCCN tanımlayıcısı olan Vikipedi maddeleri
  • NDL tanımlayıcısı olan Vikipedi maddeleri
  • NKC tanımlayıcısı olan Vikipedi maddeleri
  • NLI tanımlayıcısı olan Vikipedi maddeleri
  • Sayfa en son 18.20, 8 Temmuz 2025 tarihinde değiştirildi.
  • Metin Creative Commons Atıf-AynıLisanslaPaylaş Lisansı altındadır ve ek koşullar uygulanabilir. Bu siteyi kullanarak Kullanım Şartlarını ve Gizlilik Politikasını kabul etmiş olursunuz.
    Vikipedi® (ve Wikipedia®) kâr amacı gütmeyen kuruluş olan Wikimedia Foundation, Inc. tescilli markasıdır.
  • Gizlilik politikası
  • Vikipedi hakkında
  • Sorumluluk reddi
  • Davranış Kuralları
  • Geliştiriciler
  • İstatistikler
  • Çerez politikası
  • Mobil görünüm
  • Wikimedia Foundation
  • Powered by MediaWiki
Diferansiyel denklem
Konu ekle