Kısmi diferansiyel denklem - Vikipedi
İçeriğe atla
Ana menü
Gezinti
  • Anasayfa
  • Hakkımızda
  • İçindekiler
  • Rastgele madde
  • Seçkin içerik
  • Yakınımdakiler
Katılım
  • Deneme tahtası
  • Köy çeşmesi
  • Son değişiklikler
  • Dosya yükle
  • Topluluk portalı
  • Wikimedia dükkânı
  • Yardım
  • Özel sayfalar
Vikipedi Özgür Ansiklopedi
Ara
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç

İçindekiler

  • Giriş
  • 1 Kısmi Türevli Denklemler
  • 2 Kısmi Türevli Denklemlerin Elde Edilmesi
  • 3 Ayrıca bakınız
  • 4 Kaynakça

Kısmi diferansiyel denklem

  • العربية
  • الدارجة
  • Asturianu
  • Български
  • বাংলা
  • Català
  • Čeština
  • Чӑвашла
  • Deutsch
  • Ελληνικά
  • English
  • Esperanto
  • Español
  • Eesti
  • Euskara
  • فارسی
  • Suomi
  • Français
  • Galego
  • עברית
  • हिन्दी
  • Magyar
  • Հայերեն
  • Bahasa Indonesia
  • İtaliano
  • 日本語
  • 한국어
  • Македонски
  • Bahasa Melayu
  • Nederlands
  • Norsk bokmål
  • Polski
  • Português
  • Română
  • Русский
  • Scots
  • Srpskohrvatski / српскохрватски
  • Simple English
  • Slovenčina
  • Slovenščina
  • Shqip
  • Српски / srpski
  • Svenska
  • ไทย
  • Tagalog
  • Українська
  • Oʻzbekcha / ўзбекча
  • Tiếng Việt
  • 中文
  • 粵語
Bağlantıları değiştir
  • Madde
  • Tartışma
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Araçlar
Eylemler
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Genel
  • Sayfaya bağlantılar
  • İlgili değişiklikler
  • Kalıcı bağlantı
  • Sayfa bilgisi
  • Bu sayfayı kaynak göster
  • Kısaltılmış URL'yi al
  • Karekodu indir
Yazdır/dışa aktar
  • Bir kitap oluştur
  • PDF olarak indir
  • Basılmaya uygun görünüm
Diğer projelerde
  • Wikimedia Commons
  • Vikiveri ögesi
Görünüm
Vikipedi, özgür ansiklopedi
(Kısmi türevsel denklemler sayfasından yönlendirildi)

Matematikte, bir kısmi diferansiyel denklem birkaç değişkenli bir fonksiyon ile bu fonksiyonun değişkenlere göre kısmi türevleri arasındaki ilişkiyi inceler.

Kısmi Türevli Denklemler

[değiştir | kaynağı değiştir]

İçinde en az iki bağımsız ve en az bir bağımlı değişken ile bağımlı değişkenin bağımsız değişkene göre çeşitli basamaktan kısmi türevlerini belirten eşitliklere (özdeşlik değil) bir kısmi türevli denklem denir. z {\displaystyle z} {\displaystyle z} bağımlı x {\displaystyle x} {\displaystyle x} ve y {\displaystyle y} {\displaystyle y} bağımsız değişkenler olmak üzere bir kısmi türevli denklem genel olarak

F ( x , y , z , z x , z y , z x x , z x y , z y y , . . . ) = 0 {\displaystyle F(x,y,z,zx,zy,zxx,zxy,zyy,...)=0} {\displaystyle F(x,y,z,zx,zy,zxx,zxy,zyy,...)=0} şeklindedir.

Burada

z x = d z / d x , z y = d z / d y , z x x = d 2 z / d x 2 , z x x = d 2 z / d x 2 , z x y = d 2 z / d x d y , z y y = d 2 z / d y 2 , . . . {\displaystyle zx=dz/dx,zy=dz/dy,zxx=d2z/dx2,zxx=d2z/dx2,zxy=d2z/dxdy,zyy=d2z/dy2,...} {\displaystyle zx=dz/dx,zy=dz/dy,zxx=d2z/dx2,zxx=d2z/dx2,zxy=d2z/dxdy,zyy=d2z/dy2,...} dir.

Cauchy-Riemann sistemi iki bağımlı, iki bağımsız değişkene sahip kısmi türevli denklemlere örneklerdir.

Kısmi Türevli Denklemlerin Elde Edilmesi

[değiştir | kaynağı değiştir]

Verilen bir yüzey ailesinin sağladığı en küçük basamaktan kısmi türevli denklemi elde edebilmek için yüzey ailesindeki bağımlı değişken, bağımsız değişken, bağımsız değişkenlere göre yeterince türetilip verilen yüzey ile hesaplanan türevler arasında keyfi fonksiyonlar ve bunların türevleri yok edilir. Verilen yüzey ailesi, bu denklemin genel çözümü olabileceği gibi, genel çözümün parametremlere bağlı bir alt sınıfı da olabilir. Bu durumda verilen yüzeyle türevler arasında keyfi parametre yok edilir.

Ayrıca bakınız

[değiştir | kaynağı değiştir]
  • Adomian bozunma metodu
  • g
  • t
  • d
Diferansiyel denklemler
Sınıflandırma
İşlemler
  • Diferansiyel operatörü
  • Türevleme için gösterim
  • Adi
  • Kısmi
  • Diferansiyel-cebirsel
  • İntegro-diferansiyel
  • Kesirli
  • Doğrusal
  • Doğrusal olmayan
  • Holonomik
Değişkenlerin nitelikleri
  • Bağımlı ve bağımsız değişkenler
  • |Homojen
  • Homojen olmayan
  • İç içe geçmiş (Coupled)
  • Ayrışmış (Decoupled)
  • Mertebe (Order)
  • Derece (Degree)
  • Otonom
  • Tam diferansiyel denklem
  • Karmaşık diferansiyel denklem
Süreçlerle ilişkisi
  • Fark (ayrık analog)
  • Stokastik
    • Stokastik kısmi
  • Gecikme
Çözümler
Çözüm konuları
  • Picard–Lindelöf teoremi (varlık ve teklik)
  • Wronskiyen
  • Faz portresi
  • Faz uzayı
  • Lyapunov kararlılığı
  • Asimptotik kararlılık
  • Üstel kararlılık
  • Yakınsama oranı
  • Seri çözümleri
  • İntegral çözümleri
  • Numerik entegrasyon
  • Dirac delta fonksiyonu
Çözüm yöntemleri
  • Inspection
  • Değişkenlerin ayrılması
  • Belirsiz katsayılar metodu
  • Parametrelerin değişimi
  • İntegralleme çarpanı
  • İntegral dönüşümleri|
  • Euler yöntemi
  • Sonlu farklar yöntemi
  • Crank-Nicolson yöntemi
  • Runge-Kutta yöntemi
  • Sonlu elemanlar yöntemi
  • Sonlu hacim yöntemi
  • Galerkin yöntemi
  • Pertürbasyon teorisi
Uygulamalar
  • Adlandırılmış diferansiyel denklemler listesi
Matematikçiler
  • Isaac Newton
  • Gottfried Wilhelm Leibniz
  • Leonhard Euler
  • Jacob Bernoulli
  • Émile Picard
  • Józef Maria Hoene-Wroński
  • Ernst Lindelöf
  • Rudolf Lipschitz
  • Joseph-Louis Lagrange
  • Augustin-Louis Cauchy
  • John Crank
  • Phyllis Nicolson
  • Carl David Tolmé Runge
  • Martin Kutta
  • Sofya Kovalevskaya


Kaynakça

[değiştir | kaynağı değiştir]
Otorite kontrolü Bunu Vikiveri'de düzenleyin
  • BNF: cb11931364s (data)
  • GND: 4044779-0
  • LCCN: sh85037912
  • LNB: 000087182
  • NDL: 00563088
  • NKC: ph123970
  • NLI: 987007552909105171
"https://tr.wikipedia.org/w/index.php?title=Kısmi_diferansiyel_denklem&oldid=34758207" sayfasından alınmıştır
Kategoriler:
  • Çok değişkenli hesap
  • Kısmi diferansiyel denklemler
Gizli kategoriler:
  • BNF tanımlayıcısı olan Vikipedi maddeleri
  • GND tanımlayıcısı olan Vikipedi maddeleri
  • LCCN tanımlayıcısı olan Vikipedi maddeleri
  • LNB tanımlayıcısı olan Vikipedi maddeleri
  • NDL tanımlayıcısı olan Vikipedi maddeleri
  • NKC tanımlayıcısı olan Vikipedi maddeleri
  • NLI tanımlayıcısı olan Vikipedi maddeleri
  • Sayfa en son 11.00, 7 Şubat 2025 tarihinde değiştirildi.
  • Metin Creative Commons Atıf-AynıLisanslaPaylaş Lisansı altındadır ve ek koşullar uygulanabilir. Bu siteyi kullanarak Kullanım Şartlarını ve Gizlilik Politikasını kabul etmiş olursunuz.
    Vikipedi® (ve Wikipedia®) kâr amacı gütmeyen kuruluş olan Wikimedia Foundation, Inc. tescilli markasıdır.
  • Gizlilik politikası
  • Vikipedi hakkında
  • Sorumluluk reddi
  • Davranış Kuralları
  • Geliştiriciler
  • İstatistikler
  • Çerez politikası
  • Mobil görünüm
  • Wikimedia Foundation
  • Powered by MediaWiki
Kısmi diferansiyel denklem
Konu ekle