Harmonik ortalama - Vikipedi
İçeriğe atla
Ana menü
Gezinti
  • Anasayfa
  • Hakkımızda
  • İçindekiler
  • Rastgele madde
  • Seçkin içerik
  • Yakınımdakiler
Katılım
  • Deneme tahtası
  • Köy çeşmesi
  • Son değişiklikler
  • Dosya yükle
  • Topluluk portalı
  • Wikimedia dükkânı
  • Yardım
  • Özel sayfalar
Vikipedi Özgür Ansiklopedi
Ara
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç

İçindekiler

  • Giriş
  • 1 Tanım
  • 2 İki veri için harmonik ortalama
  • 3 Diğer ortalama türleriyle ilişkisi
  • 4 Ayrıca bakınız
  • 5 Kaynakça
  • 6 Dış bağlantılar

Harmonik ortalama

  • العربية
  • Azərbaycanca
  • Български
  • Català
  • کوردی
  • Čeština
  • Dansk
  • Deutsch
  • Ελληνικά
  • English
  • Esperanto
  • Español
  • Eesti
  • Euskara
  • فارسی
  • Suomi
  • Français
  • Galego
  • עברית
  • हिन्दी
  • Magyar
  • Հայերեն
  • İtaliano
  • 日本語
  • Қазақша
  • 한국어
  • Latina
  • Lietuvių
  • Македонски
  • Nederlands
  • Norsk nynorsk
  • Norsk bokmål
  • Polski
  • Piemontèis
  • Português
  • Română
  • Русский
  • Srpskohrvatski / српскохрватски
  • Simple English
  • Slovenčina
  • Slovenščina
  • Српски / srpski
  • Svenska
  • தமிழ்
  • Українська
  • اردو
  • Tiếng Việt
  • 中文
  • 粵語
Bağlantıları değiştir
  • Madde
  • Tartışma
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Araçlar
Eylemler
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Genel
  • Sayfaya bağlantılar
  • İlgili değişiklikler
  • Kalıcı bağlantı
  • Sayfa bilgisi
  • Bu sayfayı kaynak göster
  • Kısaltılmış URL'yi al
  • Karekodu indir
Yazdır/dışa aktar
  • Bir kitap oluştur
  • PDF olarak indir
  • Basılmaya uygun görünüm
Diğer projelerde
  • Vikiveri ögesi
Görünüm
Vikipedi, özgür ansiklopedi

Harmonik ortalama, gözlem sonuçlarının (birim değerlerinin) terslerinin aritmetik ortalamasının tersidir.

Birim değerleri x1, x2, ..., xn gibi gösterilirse harmonik ortalama aşağıdaki gibi yazılır:

H = n 1 x 1 + 1 x 2 + ⋯ + 1 x n {\displaystyle H={\frac {n}{{\frac {1}{x_{1}}}+{\frac {1}{x_{2}}}+\cdots +{\frac {1}{x_{n}}}}}} {\displaystyle H={\frac {n}{{\frac {1}{x_{1}}}+{\frac {1}{x_{2}}}+\cdots +{\frac {1}{x_{n}}}}}}

Harmonik ortalama genellikle, ekonomik olaylarda 1 birim ile alınan ortalama miktara veya bir mamülün bir biriminin üretimi için harcanan ortalamaya gereksinim duyulduğunda kullanılır. Harmonik ortalama kısaca H harfi ile gösterilir.

Tanım

[değiştir | kaynağı değiştir]

Pozitif gerçek sayıların harmonik ortalaması; x 1 , x 2 , … , x n {\displaystyle x_{1},x_{2},\ldots ,x_{n}} {\displaystyle x_{1},x_{2},\ldots ,x_{n}}[1]

H ( x 1 , x 2 , … , x n ) = n 1 x 1 + 1 x 2 + ⋯ + 1 x n = n ∑ i = 1 n 1 x i . {\displaystyle H(x_{1},x_{2},\ldots ,x_{n})={\frac {n}{\displaystyle {\frac {1}{x_{1}}}+{\frac {1}{x_{2}}}+\cdots +{\frac {1}{x_{n}}}}}={\frac {n}{\displaystyle \sum _{i=1}^{n}{\frac {1}{x_{i}}}}}.} {\displaystyle H(x_{1},x_{2},\ldots ,x_{n})={\frac {n}{\displaystyle {\frac {1}{x_{1}}}+{\frac {1}{x_{2}}}+\cdots +{\frac {1}{x_{n}}}}}={\frac {n}{\displaystyle \sum _{i=1}^{n}{\frac {1}{x_{i}}}}}.}

Bu, karşıtların aritmetik ortalamasının tersidir.

H ( x 1 , x 2 , … , x n ) = 1 A ( 1 x 1 , 1 x 2 , … 1 x n ) , A ( x 1 , x 2 , … , x n ) = 1 H ( 1 x 1 , 1 x 2 , … 1 x n ) , {\displaystyle {\begin{aligned}H(x_{1},x_{2},\ldots ,x_{n})&={\frac {1}{\displaystyle A\left({\frac {1}{x_{1}}},{\frac {1}{x_{2}}},\ldots {\frac {1}{x_{n}}}\right)}},\\A(x_{1},x_{2},\ldots ,x_{n})&={\frac {1}{\displaystyle H\left({\frac {1}{x_{1}}},{\frac {1}{x_{2}}},\ldots {\frac {1}{x_{n}}}\right)}},\end{aligned}}} {\displaystyle {\begin{aligned}H(x_{1},x_{2},\ldots ,x_{n})&={\frac {1}{\displaystyle A\left({\frac {1}{x_{1}}},{\frac {1}{x_{2}}},\ldots {\frac {1}{x_{n}}}\right)}},\\A(x_{1},x_{2},\ldots ,x_{n})&={\frac {1}{\displaystyle H\left({\frac {1}{x_{1}}},{\frac {1}{x_{2}}},\ldots {\frac {1}{x_{n}}}\right)}},\end{aligned}}}

Aritmetik ortalama şu şekilde tanımlanır: A ( x 1 , x 2 , … , x n ) = 1 n ∑ i = 1 n x i . {\textstyle A(x_{1},x_{2},\ldots ,x_{n})={\tfrac {1}{n}}\sum _{i=1}^{n}x_{i}.} {\textstyle A(x_{1},x_{2},\ldots ,x_{n})={\tfrac {1}{n}}\sum _{i=1}^{n}x_{i}.}

Harmonik ortalama, Schur-concave [en] bir fonksiyondur ve argümanlarının minimum değeri tarafından baskın bir şekilde tanımlanır. min ( x 1 … x n ) ≤ H ( x 1 … x n ) ≤ n min ( x 1 … x n ) {\displaystyle \min(x_{1}\ldots x_{n})\leq H(x_{1}\ldots x_{n})\leq n\min(x_{1}\ldots x_{n})} {\displaystyle \min(x_{1}\ldots x_{n})\leq H(x_{1}\ldots x_{n})\leq n\min(x_{1}\ldots x_{n})} şeklindedir. Bu nedenle, harmonik ortalamanın bazı değerleri daha büyük olanlarla değiştirildiğinde (en az bir değer değiştirilmeden) daha büyük hale getirilemeyeceği söylenebilir.

Harmonik ortalama ayrıca Schur-concave [en] fonksiyonu olmasından dolayı güçlü bir özelliktir. Ancak, negatif değerler kullanıldığında ortalamanın fonksiyon olma özelliğini kaybettiği için yalnızca pozitif sayıların kullanılması gerektiğine dikkat edilmelidir.

İki veri için harmonik ortalama

[değiştir | kaynağı değiştir]
İki sayı, a ve b için üç Pythagorean ortalamanın geometrik bir yapısı. Harmonik ortalama mor ile H ile gösterilirken, aritmetik ortalama kırmızı ile A ve geometrik ortalama mavi ile G olarak belirtilmiştir. Q, dördüncü bir ortalama olan kuadratik ortalamayı temsil etmektedir. Bir hipotenüsün her zaman bir dik üçgenin kenarlarından daha uzun olduğunu gösteren diyagram, şunu gösterir ki: H ≤ G ≤ A ≤ Q {\displaystyle H\leq G\leq A\leq Q} {\displaystyle H\leq G\leq A\leq Q}.

Yalnız iki tane veri, ( x 1 {\displaystyle x_{1}} {\displaystyle x_{1}} ve x 2 {\displaystyle x_{2}} {\displaystyle x_{2}}) elde bulunursa, bunlar için harmonik ortalama H şöyle ifade edilebilir.

H = 2 x 1 x 2 x 1 + x 2 . {\displaystyle H={\frac {{2}{x_{1}}{x_{2}}}{{x_{1}}+{x_{2}}}}.} {\displaystyle H={\frac {{2}{x_{1}}{x_{2}}}{{x_{1}}+{x_{2}}}}.}

Bu halde bulunan harmonik ortalama, bu iki sayının aritmetik ortalamasına şöyle ilişkilidir;

A = x 1 + x 2 2 , {\displaystyle A={\frac {{x_{1}}+{x_{2}}}{2}},} {\displaystyle A={\frac {{x_{1}}+{x_{2}}}{2}},}

ve bu iki verinin geometrik ortalamasi olan G ise

G = x 1 ⋅ x 2 , {\displaystyle G={\sqrt {{x_{1}}\cdot {x_{2}}}},} {\displaystyle G={\sqrt {{x_{1}}\cdot {x_{2}}}},}

Bu harmonik ortalamaya şöyle ilişkilidir:

H = G 2 A . {\displaystyle H={\frac {G^{2}}{A}}.} {\displaystyle H={\frac {G^{2}}{A}}.}

Böylece,

G = A H {\displaystyle G={\sqrt {{A}{H}}}} {\displaystyle G={\sqrt {{A}{H}}}} ,

olur. Bu demektir ki geometrik ortalama, aritmetik ortalama ve harmonik ortalama'nın geometrik ortalaması olur.

Ama çok dikkat edilmelidir ki bu sonuç yalnız ve yalnız iki veri için geçerli olur.

Diğer ortalama türleriyle ilişkisi

[değiştir | kaynağı değiştir]

Tüm pozitif veri setlerinde, en az bir eşit olmayan değer çifti bulunan durumlarda, harmonik ortalama her zaman üç Pythagorean ortalamasından en küçüğüdür.[2] Aritmetik ortalama her zaman en büyüğüdür ve geometrik ortalama ise her zaman bunların ortasında yer alır. (Eğer bir boş olmayan veri setindeki tüm değerler eşitse, bu üç ortalama her zaman birbirine eşit olur; örneğin, {2, 2, 2} kümesinin harmonik, geometrik ve aritmetik ortalamaları hepsi 2'dir.)

Bu, kuvvet ortalamasının M−1 özel durumudur; H ( x 1 , x 2 , … , x n ) = M − 1 ( x 1 , x 2 , … , x n ) = n x 1 − 1 + x 2 − 1 + ⋯ + x n − 1 {\displaystyle H\left(x_{1},x_{2},\ldots ,x_{n}\right)=M_{-1}\left(x_{1},x_{2},\ldots ,x_{n}\right)={\frac {n}{x_{1}^{-1}+x_{2}^{-1}+\cdots +x_{n}^{-1}}}} {\displaystyle H\left(x_{1},x_{2},\ldots ,x_{n}\right)=M_{-1}\left(x_{1},x_{2},\ldots ,x_{n}\right)={\frac {n}{x_{1}^{-1}+x_{2}^{-1}+\cdots +x_{n}^{-1}}}}Harmonik ortalama, bir sayı listesinin en küçük elemanlarına güçlü bir şekilde yöneldiğinden, büyük aşırı değerlerin etkisini azaltma ve küçük olanların etkisini artırma eğilimindedir. Aritmetik ortalama, sıklıkla harmonik ortalamanın gerektiği yerlerde yanlış bir şekilde kullanılmaktadır.

Harmonik ortalama, aşağıdaki eşitlikte görüldüğü gibi diğer Pythagorean ortalamaları ile ilişkilidir. Bu, paydanın, n sayısının her bir terimini hariç tutarak çarpımının aritmetik ortalaması olarak yorumlanmasıyla görülebilir. Yani, birinci terim için, ilk terim hariç tüm n sayısını çarparız; ikinci terim için, ikinci terim hariç tüm n sayısını çarparız; ve bu şekilde devam ederiz. Pay, aritmetik ortalamayla ilişkili n hariç tutulduğunda, n kuvvetine sahip geometrik ortalamadır. Böylece n'inci harmonik ortalama, n'inci geometrik ve aritmetik ortalamalarla ilişkilidir.

Genel formül şöyledir: H ( x 1 , … , x n ) = ( G ( x 1 , … , x n ) ) n A ( x 2 x 3 ⋯ x n , x 1 x 3 ⋯ x n , … , x 1 x 2 ⋯ x n − 1 ) = ( G ( x 1 , … , x n ) ) n A ( 1 x 1 ∏ i = 1 n x i , 1 x 2 ∏ i = 1 n x i , … , 1 x n ∏ i = 1 n x i ) . {\displaystyle H\left(x_{1},\ldots ,x_{n}\right)={\frac {\left(G\left(x_{1},\ldots ,x_{n}\right)\right)^{n}}{A\left(x_{2}x_{3}\cdots x_{n},x_{1}x_{3}\cdots x_{n},\ldots ,x_{1}x_{2}\cdots x_{n-1}\right)}}={\frac {\left(G\left(x_{1},\ldots ,x_{n}\right)\right)^{n}}{A\left({\frac {1}{x_{1}}}{\prod \limits _{i=1}^{n}x_{i}},{\frac {1}{x_{2}}}{\prod \limits _{i=1}^{n}x_{i}},\ldots ,{\frac {1}{x_{n}}}{\prod \limits _{i=1}^{n}x_{i}}\right)}}.} {\displaystyle H\left(x_{1},\ldots ,x_{n}\right)={\frac {\left(G\left(x_{1},\ldots ,x_{n}\right)\right)^{n}}{A\left(x_{2}x_{3}\cdots x_{n},x_{1}x_{3}\cdots x_{n},\ldots ,x_{1}x_{2}\cdots x_{n-1}\right)}}={\frac {\left(G\left(x_{1},\ldots ,x_{n}\right)\right)^{n}}{A\left({\frac {1}{x_{1}}}{\prod \limits _{i=1}^{n}x_{i}},{\frac {1}{x_{2}}}{\prod \limits _{i=1}^{n}x_{i}},\ldots ,{\frac {1}{x_{n}}}{\prod \limits _{i=1}^{n}x_{i}}\right)}}.}Eğer birbirine benzemeyen bir sayı kümesi, aritmetik ortalamayı değiştirmeden iki veya daha fazla elemanın birbirinden "yayılmasını" içeren bir ortalama koruyucu yayılmaya tabi tutulursa, harmonik ortalama her zaman azalır.[3]

Ayrıca bakınız

[değiştir | kaynağı değiştir]
  • Ağırlıklı harmonik ortalama
  • Aritmetik ortalama
  • Geometrik ortalama : Verilerin logaritmalarının aritmetik ortalaması.
  • Ortalama kare
  • Ortalama
  • Pisagorik ortalama

Kaynakça

[değiştir | kaynağı değiştir]
  1. ^ Weisstein, Eric W. "Harmonic Mean". mathworld.wolfram.com (İngilizce). 29 Şubat 2000 tarihinde kaynağından arşivlendi. Erişim tarihi: 31 Mayıs 2023. 
  2. ^ Da-Feng Xia, Sen-Lin Xu, and Feng Qi, "A proof of the arithmetic mean-geometric mean-harmonic mean inequalities", RGMIA Research Report Collection, vol. 2, no. 1, 1999, http://ajmaa.org/RGMIA/papers/v2n1/v2n1-10.pdf 22 Aralık 2015 tarihinde Wayback Machine sitesinde arşivlendi.
  3. ^ Mitchell, Douglas W., "More on spreads and non-arithmetic means," The Mathematical Gazette 88, March 2004, 142–144.

Dış bağlantılar

[değiştir | kaynağı değiştir]
  • Harmonik Ortalama Hesaplama
  • MathWorld'de harmonik ortalama25 Ocak 2011 tarihinde Wayback Machine sitesinde arşivlendi.
  • Cut-the-Knot sitesinde ortalamalar, aritmetik ve harmonik ortalamalar29 Aralık 2010 tarihinde Wayback Machine sitesinde arşivlendi.
  • g
  • t
  • d
İstatistik
Betimsel istatistik
Sürekli veriler
Merkezî konum
Ortalama (Aritmetik, Geometrik, Harmonik) • Medyan • Mod
Yayılma
Açıklık • Standart sapma • Varyasyon katsayısı • Çeyrekler açıklığı • Kesirlilikler (kantil) (Dörttebirlik, Ondabirlik, Yüzdebirlik)
Dağılım şekli
Varyans • Çarpıklık • Basıklık • Moment (matematik)
İstatistiksel tablolar
Sıklık dağılımı • Çoklu sayılı özetleme tabloları • İlişki tablosu • Çoklu-yönlü sınıflandırma tabloları
İstatistiksel grafikler
Dairesel grafik • Çubuk grafiği • Kutu grafiği • Dal-yaprak grafikleri • Kontrol diyagramı • Histogram • Sıklık çizelgesi • Q-Q grafiği • Serpilme diyagramı
Veri toplama
Örnek tasarımı
Anakütle • Basit rassal örnekleme Örüntülü örnekleme • Tabakalı örnekleme • Küme örneklemesi • Çok aşamalı örnekleme
Deneysel tasarım
Anakütle • İstatistiksel deneysel tasarım tipleri • Deneysel hata • Yineleme • Bloklama • Duyarlılık ve belirleme
Örneklem kavramları
Örneklem büyüklüğü • Sınama gücü • Etki büyüklüğü • Örnekleme dağılımı • Standart hata
Çıkarımsal istatistik
ve
İstatistiksel kestirim ve testler
Çıkarımsal analiz tipleri
Kestirim • Parametrik çıkarımsal analiz • Parametrik olmayan çıkarımsal analiz • Bayesci çıkarımsal analiz • Meta-analiz
Çıkarımsal kestirim
Genel kestirim kavramları
Momentler yöntemi • Enbüyük olabilirlik • Enbüyük artçıl • Bayes-tipi kestirimci • Minimum uzaklık • Maksimum aralık verme
Tekdeğişkenli kestirim
Kestirim • Güven aralığı • İnanılır aralık
Hipotez testi
İstatistiksel test ana kavramları
Sıfır hipotez • I.Tür ve II.Tür hata • Anlamlılık seviyesi • p-değeri
Basit tek-değişkenli ve iki-değişkenli
parametrik hipotez testi
μ için testi •

π için test • μ1-μ2 için test • π1-π2 için test •

σ1/σ2 için test
Tek-değişkenli ve iki-değişkenli
parametrik olmayan test analizi
Medyan testi • Ki-kare testi • Pearson ki-kare testi • Phi katsayısı • Wald testi • Mann-Whitney U testi • Wilcoxon'in işaretli sıralama testi
Korelasyon
ve
Regresyon analizi
Korelasyon
Pearson çarpım-moment korelasyonu • Sıralama korelasyonu ( Spearman'in rho • Kendall'in tau)
Doğrusal regresyon
Regresyon analizi  • Doğrusal model • Genel doğrusal model • Genelleştirilmiş doğrusal model
Doğrusal olmayan regresyon
Parametrik olmayan • Yarıparametrik • Logistik
Varyans analizi
Tek-yönlü varyans analizi • Kovaryans analizi • Bloklu tek-yönlü varyans analizi • Etki karışımı değişkeni
Çokdeğişkenli istatistik
Çokdeğişkenli regresyon • temel bileşenler · Faktör analizi • Kanonik korelesyon • Uygunluk analizi • Kümeleme analizi
Zaman serileri analizi
Yapısal model tanımlanması
Zaman serisi yapisal model ögeleri • Zaman serisi ögeleri saptanması • Zaman grafiği • Korrelogram
Zaman serileri kestirim teknik ve modelleri
Dekompozisyon • Trend uygulama kestirimi • Üssel düzgünleştirme • ARIMA modelleri • Box–Jenkins • Spektral yoğunluk kestirimi
Kestirim değerlendirmesi
Zaman seri kestirim değerlendirmesi
Sağkalım analizi
Sağkalım fonksiyonu • Kaplan–Meier • Log-sıra testi • Başarısızlık oranı • orantılı tehlikeler modeli
Kategori • Outline • Endeks
"https://tr.wikipedia.org/w/index.php?title=Harmonik_ortalama&oldid=35859084" sayfasından alınmıştır
Kategori:
  • Ortalama
Gizli kategori:
  • Webarşiv şablonu wayback bağlantıları
  • Sayfa en son 14.55, 18 Ağustos 2025 tarihinde değiştirildi.
  • Metin Creative Commons Atıf-AynıLisanslaPaylaş Lisansı altındadır ve ek koşullar uygulanabilir. Bu siteyi kullanarak Kullanım Şartlarını ve Gizlilik Politikasını kabul etmiş olursunuz.
    Vikipedi® (ve Wikipedia®) kâr amacı gütmeyen kuruluş olan Wikimedia Foundation, Inc. tescilli markasıdır.
  • Gizlilik politikası
  • Vikipedi hakkında
  • Sorumluluk reddi
  • Davranış Kuralları
  • Geliştiriciler
  • İstatistikler
  • Çerez politikası
  • Mobil görünüm
  • Wikimedia Foundation
  • Powered by MediaWiki
Harmonik ortalama
Konu ekle