Tanjant teoremi - Vikipedi
İçeriğe atla
Ana menü
Gezinti
  • Anasayfa
  • Hakkımızda
  • İçindekiler
  • Rastgele madde
  • Seçkin içerik
  • Yakınımdakiler
Katılım
  • Deneme tahtası
  • Köy çeşmesi
  • Son değişiklikler
  • Dosya yükle
  • Topluluk portalı
  • Wikimedia dükkânı
  • Yardım
  • Özel sayfalar
Vikipedi Özgür Ansiklopedi
Ara
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç

Tanjant teoremi

  • العربية
  • Bosanski
  • Català
  • کوردی
  • Čeština
  • Чӑвашла
  • Deutsch
  • Ελληνικά
  • English
  • Esperanto
  • Español
  • Euskara
  • فارسی
  • Suomi
  • Français
  • עברית
  • Magyar
  • Հայերեն
  • İtaliano
  • 日本語
  • ქართული
  • ភាសាខ្មែរ
  • 한국어
  • Македонски
  • Nederlands
  • Norsk bokmål
  • Polski
  • Português
  • Русский
  • Slovenčina
  • Slovenščina
  • Српски / srpski
  • Svenska
  • தமிழ்
  • ไทย
  • Українська
  • Oʻzbekcha / ўзбекча
  • Tiếng Việt
  • 中文
Bağlantıları değiştir
  • Madde
  • Tartışma
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Araçlar
Eylemler
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Genel
  • Sayfaya bağlantılar
  • İlgili değişiklikler
  • Kalıcı bağlantı
  • Sayfa bilgisi
  • Bu sayfayı kaynak göster
  • Kısaltılmış URL'yi al
  • Karekodu indir
Yazdır/dışa aktar
  • Bir kitap oluştur
  • PDF olarak indir
  • Basılmaya uygun görünüm
Diğer projelerde
  • Vikiveri ögesi
Görünüm
Vikipedi, özgür ansiklopedi
Bir üçgen

Trigonometride tanjant teoremi üçgenin üç kenarının uzunluğu ve açıların tanjantları arasındaki ilişki hakkında bir teoremdir.

a − b a + b = tan ⁡ [ 1 2 ( α − β ) ] tan ⁡ [ 1 2 ( α + β ) ] . {\displaystyle {\frac {a-b}{a+b}}={\frac {\tan[{\frac {1}{2}}(\alpha -\beta )]}{\tan[{\frac {1}{2}}(\alpha +\beta )]}}.} {\displaystyle {\frac {a-b}{a+b}}={\frac {\tan[{\frac {1}{2}}(\alpha -\beta )]}{\tan[{\frac {1}{2}}(\alpha +\beta )]}}.}
  • g
  • t
  • d
Üçgen
Üçgen Türleri
Dik üçgen · İkizkenar üçgen · Eşkenar üçgen
Yardımcı Elemanlar
Açıortay · Kenarortay · Yükseklik
Teoremler ve bağıntılar
Pisagor teoremi · Ceva teoremi · Menelaus teoremi · Stewart teoremi · Thales teoremi · Öklid bağıntıları · Kosinüs teoremi · Sinüs teoremi · Tanjant teoremi · Heron formülü
  • g
  • t
  • d
Trigonometri
Ana hatları  • Tarihi  • Kullanım alanları  • Genelleştirilmiş
Açı ölçü birimleri
  • Devir
  • Derece
  • Radyan
  • Grad
Trigonometrik fonksiyonlar &
Ters trigonometrik fonksiyonlar
  • Sinüs (sin)
  • Kosinüs (cos)
  • Tanjant (tan)
  • Kotanjant (cot)
  • Sekant (sec)
  • Kosekant (csc)
  • Versinüs (versin)
  • Verkosinüs (vercosin)
  • Koversinüs (coversin)
  • Koverkosinüs (covercosin)
  • Haversinüs (haversin)
  • Haverkosinüs (havercosin)
  • Hakoversinüs (hacoversin)
  • Hakoverkosinüs (hacovercosin)
  • Ekssekant (exsec)
  • Ekskosekant (excsc)
Referans
  • Özdeşlikler
  • Tam sabitler
  • Tablolar
  • Birim çember
Yasalar ve teoremler
  • Kosinüs teoremi
  • Sinüs teoremi
  • Tanjant teoremi
  • Kotanjant teoremi
  • Pisagor teoremi
Kalkülüs
  • Trigonometrik yerine koyma
  • İntegraller (Ters fonksiyonlar)
  • Türevler
  • Trigonometrik seri
İlgili konular
  • Üçgen
  • Çember
  • Geometri
  • Açı
Kullanıldığı dallar
  • Matematik
  • Geometri
  • Fizik
  • Mühendislik
  • Astronomi
Katkı sağlayan matematikçiler
  • Hipparchus
  • Ptolemy
  • Brahmagupta
  • Battânî
  • Regiomontanus
  • Viète
  • de Moivre
  • Euler
  • Fourier
Taslak simgesiGeometri ile ilgili bu madde taslak seviyesindedir. Madde içeriğini genişleterek Vikipedi'ye katkı sağlayabilirsiniz.
"https://tr.wikipedia.org/w/index.php?title=Tanjant_teoremi&oldid=30476635" sayfasından alınmıştır
Kategoriler:
  • Geometri taslakları
  • Trigonometri
  • Öklid geometrisi teoremleri
Gizli kategori:
  • Tüm taslak maddeler
  • Sayfa en son 21.19, 30 Ekim 2023 tarihinde değiştirildi.
  • Metin Creative Commons Atıf-AynıLisanslaPaylaş Lisansı altındadır ve ek koşullar uygulanabilir. Bu siteyi kullanarak Kullanım Şartlarını ve Gizlilik Politikasını kabul etmiş olursunuz.
    Vikipedi® (ve Wikipedia®) kâr amacı gütmeyen kuruluş olan Wikimedia Foundation, Inc. tescilli markasıdır.
  • Gizlilik politikası
  • Vikipedi hakkında
  • Sorumluluk reddi
  • Davranış Kuralları
  • Geliştiriciler
  • İstatistikler
  • Çerez politikası
  • Mobil görünüm
  • Wikimedia Foundation
  • Powered by MediaWiki
Tanjant teoremi
Konu ekle