Skaler (matematik) - Vikipedi
İçeriğe atla
Ana menü
Gezinti
  • Anasayfa
  • Hakkımızda
  • İçindekiler
  • Rastgele madde
  • Seçkin içerik
  • Yakınımdakiler
Katılım
  • Deneme tahtası
  • Köy çeşmesi
  • Son değişiklikler
  • Dosya yükle
  • Topluluk portalı
  • Wikimedia dükkânı
  • Yardım
  • Özel sayfalar
Vikipedi Özgür Ansiklopedi
Ara
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç

İçindekiler

  • Giriş
  • 1 Ayrıca bakınız
  • 2 Kaynakça

Skaler (matematik)

  • Afrikaans
  • العربية
  • Беларуская
  • Беларуская (тарашкевіца)
  • Български
  • বাংলা
  • Bosanski
  • Català
  • Čeština
  • Чӑвашла
  • Dansk
  • Deutsch
  • Ελληνικά
  • English
  • Esperanto
  • Español
  • Eesti
  • Euskara
  • فارسی
  • Suomi
  • Français
  • Galego
  • עברית
  • Hrvatski
  • Kreyòl ayisyen
  • Magyar
  • İnterlingua
  • Bahasa Indonesia
  • Ido
  • İtaliano
  • 日本語
  • La .lojban.
  • ქართული
  • Қазақша
  • 한국어
  • Кыргызча
  • Македонски
  • मराठी
  • Bahasa Melayu
  • Nederlands
  • Norsk nynorsk
  • Norsk bokmål
  • Polski
  • Português
  • Română
  • Русский
  • Srpskohrvatski / српскохрватски
  • Simple English
  • Slovenčina
  • Slovenščina
  • Shqip
  • Српски / srpski
  • Svenska
  • ไทย
  • Татарча / tatarça
  • Українська
  • Oʻzbekcha / ўзбекча
  • Tiếng Việt
  • 中文
Bağlantıları değiştir
  • Madde
  • Tartışma
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Araçlar
Eylemler
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Genel
  • Sayfaya bağlantılar
  • İlgili değişiklikler
  • Kalıcı bağlantı
  • Sayfa bilgisi
  • Bu sayfayı kaynak göster
  • Kısaltılmış URL'yi al
  • Karekodu indir
Yazdır/dışa aktar
  • Bir kitap oluştur
  • PDF olarak indir
  • Basılmaya uygun görünüm
Diğer projelerde
  • Wikimedia Commons
  • Vikiveri ögesi
Görünüm
Vikipedi, özgür ansiklopedi

Matematikte ve mühendislikte skaler, skalar ya da sayıl gerçel bir sayı ile temsil edilebilen ama yönü olmayan, dolayısıyla da vektör olmayan büyüklüklere denilir.[1] Skaler doğrusal cebirde ve reel sayılarda skaler kullanılarak, vektör uzayındaki ilgili vektörler, skaler çarpma işlemi ile başka bir vektöre dönüştürülür. Daha genel bir ifade ile, bir vektör uzayı, karmaşık sayılar gibi reel sayılar yerine, alan kullanılarak tanımlanabilir. Böylece bu vektör uzayının skalerleri ilgili alanın ögeleri olur.

İç çarpım vektör uzayında tanımlanan ve iki vektörün çarpılmasıyla bir skaler elde edilme işlemidir ve (skaler çarpma ile karıştırmılmamalıdır. Bir nokta çarpımın olduğu vektör uzayına iç çarpım uzayı denir.

Bu terim bazen bir vektör, matris veya tensör ile birlikte de kullanılır. Örneğin, 1×n matrisi ile n×1 matrisinin çarpımı, 1×1 matrisidir ve genellikle bir skaler olarak adlandırılır.

Köşegen matris terimi, kI formundaki bir matrisi ifade etmek için kullanılır. Burada, k bir skaler ve I birim matrisdir.


Ayrıca bakınız

[değiştir | kaynağı değiştir]
  • Skaler (fizik)
  • Cebirsel yapı
  • Doğrusal cebir
  • Matris (matematik)
  • Sütun vektörü
  • Satır vektörü
  • Tensör
  • Vektör (matematik)

Kaynakça

[değiştir | kaynağı değiştir]
  1. ^ Terimler.org sayfasında sayıl teriminin tanımı. Erişim tarihi: 22 Ocak 2025.
  • g
  • t
  • d
Lineer cebir
Temel kavramlar
  • Skaler
  • Vektör
  • Vektör uzayı
  • Skaler çarpım
  • Vektörel izdüşüm
  • Doğrusal germe
  • Doğrusal dönüşüm
  • İzdüşüm
  • Doğrusal bağımsızlık
  • Doğrusal birleşim
  • Çokludoğrusal gönderim
  • Taban
  • Taban değişimi
  • Satır vektör
  • Sütun vektör
  • Satır ve sütun uzayları
  • Sıfır uzayı
  • Özdeğer, özvektör, özuzay
  • Devriklik
  • Doğrusal denklemler
Three dimensional Euclidean space
Matrisler
  • Blok
  • Ayrışım
  • Tersinir
  • Minör
  • Çarpım
  • Rank
  • Dönüşüm
  • Cramer kuralı
  • Gauss eleme yöntemi
Çifte doğrusallık
  • Bilineer form
  • Ortogonallik
  • Nokta çarpım
  • İç çarpım uzayı
  • Dış çarpım
  • Kronecker çarpımı
  • Gram–Schmidt işlemi
Çokludoğrusal cebir
  • Determinant
  • Çapraz çarpım
  • Üçlü çarpım
  • Geometrik cebir
  • Dışsal cebir
  • Bivector
  • Multivector
  • Tensör
  • Outermorphism
Vektör uzayı yapıları
  • Fonksiyon
  • Dual
  • Bölüm
  • Altuzay
  • Tensör çarpımı
Nümerik
  • Kayan nokta
  • Nümerik stabilite
  • Seyrek matris
Kategori Kategori
"https://tr.wikipedia.org/w/index.php?title=Skaler_(matematik)&oldid=35068208" sayfasından alınmıştır
Kategoriler:
  • Lineer cebir
  • Sayıllar
  • Sayfa en son 12.41, 2 Mart 2025 tarihinde değiştirildi.
  • Metin Creative Commons Atıf-AynıLisanslaPaylaş Lisansı altındadır ve ek koşullar uygulanabilir. Bu siteyi kullanarak Kullanım Şartlarını ve Gizlilik Politikasını kabul etmiş olursunuz.
    Vikipedi® (ve Wikipedia®) kâr amacı gütmeyen kuruluş olan Wikimedia Foundation, Inc. tescilli markasıdır.
  • Gizlilik politikası
  • Vikipedi hakkında
  • Sorumluluk reddi
  • Davranış Kuralları
  • Geliştiriciler
  • İstatistikler
  • Çerez politikası
  • Mobil görünüm
  • Wikimedia Foundation
  • Powered by MediaWiki
Skaler (matematik)
Konu ekle