Gauss eliminasyonu - Vikipedi
İçeriğe atla
Ana menü
Gezinti
  • Anasayfa
  • Hakkımızda
  • İçindekiler
  • Rastgele madde
  • Seçkin içerik
  • Yakınımdakiler
Katılım
  • Deneme tahtası
  • Köy çeşmesi
  • Son değişiklikler
  • Dosya yükle
  • Topluluk portalı
  • Wikimedia dükkânı
  • Yardım
  • Özel sayfalar
Vikipedi Özgür Ansiklopedi
Ara
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç

İçindekiler

  • Giriş
  • 1 Kaynakça
    • 1.1 Alıntı eserler
  • 2 Dış bağlantılar

Gauss eliminasyonu

  • Alemannisch
  • العربية
  • Azərbaycanca
  • Башҡортса
  • Беларуская
  • Català
  • Čeština
  • Чӑвашла
  • Dansk
  • Deutsch
  • Ελληνικά
  • English
  • Esperanto
  • Español
  • Euskara
  • فارسی
  • Suomi
  • Galego
  • עברית
  • हिन्दी
  • Magyar
  • Հայերեն
  • Bahasa Indonesia
  • Íslenska
  • İtaliano
  • 日本語
  • 한국어
  • Lombard
  • Latviešu
  • Minangkabau
  • Nederlands
  • Norsk bokmål
  • Polski
  • Português
  • Română
  • Русский
  • Саха тыла
  • Srpskohrvatski / српскохрватски
  • සිංහල
  • Simple English
  • Slovenčina
  • Slovenščina
  • Shqip
  • Српски / srpski
  • Svenska
  • Українська
  • Vepsän kel’
  • Tiếng Việt
  • 吴语
  • 中文
  • 粵語
Bağlantıları değiştir
  • Madde
  • Tartışma
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Araçlar
Eylemler
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Genel
  • Sayfaya bağlantılar
  • İlgili değişiklikler
  • Kalıcı bağlantı
  • Sayfa bilgisi
  • Bu sayfayı kaynak göster
  • Kısaltılmış URL'yi al
  • Karekodu indir
Yazdır/dışa aktar
  • Bir kitap oluştur
  • PDF olarak indir
  • Basılmaya uygun görünüm
Diğer projelerde
  • Vikiveri ögesi
Görünüm
Vikipedi, özgür ansiklopedi

Matematikte, satır azaltma olarak da bilinen Gauss eliminasyonu, lineer denklem sistemlerini çözmek için kullanılan bir algoritmadır. Karşılık gelen katsayı matrisi üzerinde gerçekleştirilen bir dizi işlemden oluşur. Bu yöntem aynı zamanda bir matrisin sırasını, bir kare matrisin determinantını ve ters çevrilebilir bir matrisin tersini hesaplamak için de kullanılabilir. Yöntem adını Carl Friedrich Gauss'tan (1777-1855) almıştır ancak yöntemin bazı özel durumları - kanıt olmadan sunulsa da - Çinli matematikçiler tarafından MS. 179 dolaylarında biliniyordu.[1]

Bir matriste satır indirgeme yapmak için matrisin sol alt köşesi mümkün olduğunca sıfırlarla dolana kadar matrisi değiştirmek için bir dizi temel satır işlemi kullanılır. Üç tür temel sıra işlemi vardır:

  • İki satırı değiştirmek,,
  • Bir satırı sıfır olmayan bir sayı ile çarpmak,
  • Bir satırın katlarını başka bir satıra eklemek,

Bu işlemler kullanılarak, bir matris her zaman bir üst üçgen matrise ve aslında satır basamaklı matrise dönüştürülebilir. Önde gelen katsayıların tümü (her satırda en soldaki sıfır olmayan) 1 olduğunda ve bir önde gelen katsayı içeren her sütun başka bir yerde sıfır olduğunda, matrisin satır indirgenmiş basamaklı formda olduğu söylenir. Bu son biçim benzersizdir yani kullanılan satır işlemlerinin dizisinden bağımsızdır. Örneğin, aşağıdaki satır işlemleri dizisinde (birinci ve üçüncü adımlarda farklı satırlar üzerinde iki temel işlemin yapıldığı), üçüncü ve dördüncü matrisler satır kademeli formdakilerdir ve son matris benzersiz indirgenmiş satırdır.

[ 1 3 1 9 1 1 − 1 1 3 11 5 35 ] → [ 1 3 1 9 0 − 2 − 2 − 8 0 2 2 8 ] → [ 1 3 1 9 0 − 2 − 2 − 8 0 0 0 0 ] → [ 1 0 − 2 − 3 0 1 1 4 0 0 0 0 ] {\displaystyle {\begin{bmatrix}1&3&1&9\\1&1&-1&1\\3&11&5&35\end{bmatrix}}\to {\begin{bmatrix}1&3&1&9\\0&-2&-2&-8\\0&2&2&8\end{bmatrix}}\to {\begin{bmatrix}1&3&1&9\\0&-2&-2&-8\\0&0&0&0\end{bmatrix}}\to {\begin{bmatrix}1&0&-2&-3\\0&1&1&4\\0&0&0&0\end{bmatrix}}} {\displaystyle {\begin{bmatrix}1&3&1&9\\1&1&-1&1\\3&11&5&35\end{bmatrix}}\to {\begin{bmatrix}1&3&1&9\\0&-2&-2&-8\\0&2&2&8\end{bmatrix}}\to {\begin{bmatrix}1&3&1&9\\0&-2&-2&-8\\0&0&0&0\end{bmatrix}}\to {\begin{bmatrix}1&0&-2&-3\\0&1&1&4\\0&0&0&0\end{bmatrix}}}

Bir matrisi indirgenmiş satır kademeli forma dönüştürmek için satır işlemlerini kullanmak Gauss-Jordan eliminasyonu olarak isimlendirilir. Bu durumda Gauss eliminasyonu terimi, üst üçgen veya (indirgenmemiş) satır basamaklı formuna ulaşana kadar olan süreci ifade eder. Hesaplama nedenlerinden dolayı, bazen lineer denklem sistemlerini çözerken matris tamamen indirgenmeden önce satır işlemlerini durdurmak tercih edilir.

Kaynakça

[değiştir | kaynağı değiştir]
  1. ^ Joseph F. (1 Mayıs 2011). "How ordinary elimination became Gaussian elimination". Historia Mathematica (İngilizce). 38 (2): 163-218. doi:10.1016/j.hm.2010.06.003. ISSN 0315-0860. 17 Şubat 2023 tarihinde kaynağından arşivlendi. 

Alıntı eserler

[değiştir | kaynağı değiştir]
  • An Introduction to Numerical Analysis, 2nd, New York: John Wiley & Sons, 1989, ISBN 978-0471624899 .
  • Queueing Networks and Markov Chains: Modeling and Performance Evaluation with Computer Science Applications, 2nd, Wiley-Interscience, 2006, ISBN 978-0-471-79156-0 .
  • A Contextual History of Mathematics, Prentice Hall, 1999, ISBN 978-0-02-318285-3 .
  • Linear Least Squares Computations, STATISTICS: Textbooks and Monographs, Marcel Dekker, 1988, ISBN 978-0-8247-7661-9 .
  • Undergraduate Convexity: From Fourier and Motzkin to Kuhn and Tucker .
  • Matrix Computations, 3rd, Johns Hopkins, 1996, ISBN 978-0-8018-5414-9 .
  • Joseph F. (2011a), "How ordinary elimination became Gaussian elimination", Historia Mathematica, 38 (2), ss. 163-218, arXiv:0907.2397 Özgürce erişilebilir, doi:10.1016/j.hm.2010.06.003 
  • Joseph F. (2011b), "Mathematicians of Gaussian elimination" (PDF), Notices of the American Mathematical Society, 58 (6), ss. 782-792, 6 Aralık 2022 tarihinde kaynağından arşivlendi (PDF)1 Haziran 2023 
  • Accuracy and Stability of Numerical Algorithms, 2nd, SIAM, 2002, ISBN 978-0-89871-521-7 .
  • A History of Mathematics, Brief Version, Addison-Wesley, 2004, ISBN 978-0-321-16193-2 .
  • "Numerical Methods with Applications: Chapter 04.06 Gaussian Elimination" (PDF). 1st. University of South Florida. 2010. 7 Eylül 2012 tarihinde kaynağından (PDF) arşivlendi. 
  • Schaum's outline of theory and problems of linear algebra, New York: McGraw-Hill, 2001, ss. 69-80, ISBN 978-0-07-136200-9 .
  • "Section 2.2", Numerical Recipes: The Art of Scientific Computing, 3rd, New York: Cambridge University Press, 2007, ISBN 978-0-521-88068-8 

Dış bağlantılar

[değiştir | kaynağı değiştir]
Vikikitap
Vikikitap
Vikikitapta bu konu hakkında daha fazla bilgi var:
Linear Algebra
  • Etkileşimli didaktik araç 1 Haziran 2023 tarihinde Wayback Machine sitesinde arşivlendi.
  • g
  • t
  • d
Carl Friedrich Gauss
  • Gauss bileşim yasası
  • Gauss haritası
  • Gauss gösterimi
  • Gauss yöntemi
  • Gauss ayraçları
  • Gauss eğriliği
  • Gauss periyodu
  • Gauss yüzeyi
  • Gauss birimleri
  • Yerçekimi için Gauss yasası
  • Gauss yasası
  • Manyetizma için Gauss yasası
  • Gauss integrali
  • Gauss fonksiyonu
  • Gauss eliminasyonu
  • Gauss sabiti
  • Kategori Kategori
  • Liste Liste
  • g
  • t
  • d
Lineer cebir
Temel kavramlar
  • Skaler
  • Vektör
  • Vektör uzayı
  • Skaler çarpım
  • Vektörel izdüşüm
  • Doğrusal germe
  • Doğrusal dönüşüm
  • İzdüşüm
  • Doğrusal bağımsızlık
  • Doğrusal birleşim
  • Çokludoğrusal gönderim
  • Taban
  • Taban değişimi
  • Satır vektör
  • Sütun vektör
  • Satır ve sütun uzayları
  • Sıfır uzayı
  • Özdeğer, özvektör, özuzay
  • Devriklik
  • Doğrusal denklemler
Three dimensional Euclidean space
Matrisler
  • Blok
  • Ayrışım
  • Tersinir
  • Minör
  • Çarpım
  • Rank
  • Dönüşüm
  • Cramer kuralı
  • Gauss eleme yöntemi
Çifte doğrusallık
  • Bilineer form
  • Ortogonallik
  • Nokta çarpım
  • İç çarpım uzayı
  • Dış çarpım
  • Kronecker çarpımı
  • Gram–Schmidt işlemi
Çokludoğrusal cebir
  • Determinant
  • Çapraz çarpım
  • Üçlü çarpım
  • Geometrik cebir
  • Dışsal cebir
  • Bivector
  • Multivector
  • Tensör
  • Outermorphism
Vektör uzayı yapıları
  • Fonksiyon
  • Dual
  • Bölüm
  • Altuzay
  • Tensör çarpımı
Nümerik
  • Kayan nokta
  • Nümerik stabilite
  • Seyrek matris
Kategori Kategori
Otorite kontrolü Bunu Vikiveri'de düzenleyin
  • GND: 4156110-7
"https://tr.wikipedia.org/w/index.php?title=Gauss_eliminasyonu&oldid=36247472" sayfasından alınmıştır
Kategori:
  • Sayısal doğrusal cebir
Gizli kategoriler:
  • Webarşiv şablonu wayback bağlantıları
  • GND tanımlayıcısı olan Vikipedi maddeleri
  • Sayfa en son 18.02, 23 Ekim 2025 tarihinde değiştirildi.
  • Metin Creative Commons Atıf-AynıLisanslaPaylaş Lisansı altındadır ve ek koşullar uygulanabilir. Bu siteyi kullanarak Kullanım Şartlarını ve Gizlilik Politikasını kabul etmiş olursunuz.
    Vikipedi® (ve Wikipedia®) kâr amacı gütmeyen kuruluş olan Wikimedia Foundation, Inc. tescilli markasıdır.
  • Gizlilik politikası
  • Vikipedi hakkında
  • Sorumluluk reddi
  • Davranış Kuralları
  • Geliştiriciler
  • İstatistikler
  • Çerez politikası
  • Mobil görünüm
  • Wikimedia Foundation
  • Powered by MediaWiki
Gauss eliminasyonu
Konu ekle