Crossbar (Pasch) teoremi - Vikipedi
İçeriğe atla
Ana menü
Gezinti
  • Anasayfa
  • Hakkımızda
  • İçindekiler
  • Rastgele madde
  • Seçkin içerik
  • Yakınımdakiler
Katılım
  • Deneme tahtası
  • Köy çeşmesi
  • Son değişiklikler
  • Dosya yükle
  • Topluluk portalı
  • Wikimedia dükkânı
  • Yardım
  • Özel sayfalar
Vikipedi Özgür Ansiklopedi
Ara
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç
  • Bağış yapın
  • Hesap oluştur
  • Oturum aç

İçindekiler

  • Giriş
  • 1 Ayrıca bakınız
  • 2 Notlar
  • 3 Konuyla ilgili yayınlar
  • 4 Kaynakça

Crossbar (Pasch) teoremi

  • English
  • Português
Bağlantıları değiştir
  • Madde
  • Tartışma
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Araçlar
Eylemler
  • Oku
  • Değiştir
  • Kaynağı değiştir
  • Geçmişi gör
Genel
  • Sayfaya bağlantılar
  • İlgili değişiklikler
  • Kalıcı bağlantı
  • Sayfa bilgisi
  • Bu sayfayı kaynak göster
  • Kısaltılmış URL'yi al
  • Karekodu indir
Yazdır/dışa aktar
  • Bir kitap oluştur
  • PDF olarak indir
  • Basılmaya uygun görünüm
Diğer projelerde
  • Vikiveri ögesi
Görünüm
Vikipedi, özgür ansiklopedi
Crossbar Teoremi, AD ışınının BC segmentiyle kesiştiğini söyler

Geometride Crossbar (Pasch) teoremi (bazen Kesen Işın Teoremi olarak da adlandırılır), A D {\displaystyle AD} {\displaystyle AD} ışını A C {\displaystyle AC} {\displaystyle AC} ışını ile A B {\displaystyle AB} {\displaystyle AB} ışını arasındaysa, A D {\displaystyle AD} {\displaystyle AD} ışınının B C {\displaystyle BC} {\displaystyle BC} doğrusu parçasını keseceğini belirtir.[1]

Bu sonuç, aksiyomatik düzlem geometrisindeki daha derin sonuçlardan biridir.[2] Genellikle ispatlarda, üçgenin içinde uzanan ve üçgenin tepe noktasından geçen bir çizginin, üçgenin bu köşenin karşısındaki kenarıyla buluştuğu ifadesini doğrulamak için kullanılır. Bu özellik, Öklid tarafından kanıtlarında açık bir gerekçe olmaksızın sıklıkla kullanılmıştır.[3]

Bir ikizkenar üçgenin taban açılarının eş olduğu teoremi kanıtının bazı modern uygulamaları (Öklid'in değil) şu şekilde başlar: A B C {\displaystyle ABC} {\displaystyle ABC}, A C {\displaystyle AC} {\displaystyle AC} kenarı A B {\displaystyle AB} {\displaystyle AB} kenarı ile eş bir üçgen olsun. A {\displaystyle A} {\displaystyle A} açısının açıortayını çizin ve D {\displaystyle D} {\displaystyle D} noktası, B C {\displaystyle BC} {\displaystyle BC} kenarını kestiği nokta olsun. Ve bunun gibi farklı örnekler de mevcuttur. D {\displaystyle D} {\displaystyle D} noktasının varlığının gerekçesi, genellikle belirtilmemiş crossbar teoremidir. Bu özel sonuç için, crossbar teoreminin kullanılmasını gerektirmeyen başka kanıtlar da mevcuttur.[4]

Ayrıca bakınız

[değiştir | kaynağı değiştir]

Notlar

[değiştir | kaynağı değiştir]
  1. ^ Greenberg 1974, s. 69
  2. ^ Kay 1993, s. 122
  3. ^ Blau 2003, s. 135
  4. ^ Moise 1974, s. 70

Konuyla ilgili yayınlar

[değiştir | kaynağı değiştir]
  • Naime KARAKUŞ BAĞCI (Haziran 2017), Pasch Geometri Üzerine (PDF) (Yüksek Lisans Tezi), Afyon Kocatepe Üniversitesi 
  • Erkan ERÇOLAK (Haziran 2017), Mutlak Geometride Eşlik Aksiyomları (PDF) (Yüksek Lisans Tezi), Afyon Kocatepe Üniversitesi 

Kaynakça

[değiştir | kaynağı değiştir]
  • Blau, Harvey I. (2003), Foundations of Plane Geometry, Upper Saddle River, NJ: Prentice Hall, ISBN 0-13-047954-3 
  • Greenberg, Marvin J. (1974), Euclidean and Non-Euclidean Geometries, San Francisco: W. H. Freeman, ISBN 0-7167-0454-4 
  • Kay, David C. (1993), College Geometry: A Discovery Approach, New York: HarperCollins, ISBN 0-06-500006-4 
  • Moise, Edwin E. (1974), Elementary Geometry from an Advanced Standpoint, 2., Reading, MA: Addison-Wesley, ISBN 0-201-04793-4 
  • g
  • t
  • d
Antik Yunan matematiği
Matematikçiler
(Zaman Çizelgesi)
  • Anaksagoras
  • Antemios
  • Apollonios
  • Arkhytas
  • Aristaios
  • Aristarkos
  • Arşimet
  • Autolykos
  • Bion
  • Boethius
  • Brison
  • Kallippos
  • Karpos
  • Kleomedes
  • Konon
  • Ktesibios
  • Demokritos
  • Dikaiarkhos
  • Diokles
  • Diophantos
  • Dinostratus
  • Dionisodoros
  • Domninus
  • Elealı Zenon
  • Eratosthenes
  • Eudemos
  • Eudoksos
  • Eutokios
  • Geminus
  • Heliodoros
  • İskenderiyeli Heron
  • Khrysippos
  • Hipparkhos
  • Hippasos
  • Hippias
  • Hipokrat
  • Hipatia
  • Hipsikles
  • İsidoros
  • Matematikçi Leo
  • Leon
  • Marinos
  • Melissa
  • Menaikhmos
  • Menelaos
  • Metrodoros
  • Nikomakhos
  • Nikomedes
  • Nikoteles
  • Oenopides
  • Euklides
  • Pappos
  • Perseus
  • Philolaos
  • Philon
  • Laodikyalı Philonides
  • Porphyrios
  • Poseidonios
  • Proklos
  • Batlamyus
  • Pisagor
  • Serenus
  • Simplikios
  • Sosigenes
  • Sporus
  • Thales
  • Theaitetos
  • Theano
  • Teodoros
  • Theodosios
  • İskenderiyeli Theon
  • Smirnalı Theon
  • Timaridas
  • Ksenokrates
  • Sidonlu Zenon
  • Zenodoros
Yapıtlar
  • Almagest
  • Arşimet Parşömeni
  • Arithmetika
  • Konikler (Apollonius)
  • Katoptrik (Yansımalar)
  • Data (Öklid)
  • Elemanlar (Öklid)
  • Bir Çemberin Ölçümü
  • Konikler ve Sferoidler Üzerine
  • Büyüklükler ve Uzaklıklar Üzerine (Aristarkhos)
  • Büyüklükler ve Uzaklıklar Üzerine (Hipparkhos)
  • Hareketli Küre Üzerine (Autolykos)
  • Öklid'in Optiği
  • Sarmallar Üzerine
  • Küre ve Silindir Üzerine
  • Ostomachion (Syntomachion)
  • Planisphaerium
  • Sphaerics
  • Parabolün Dörtgenleştirilmesi
  • Kum Sayacı
  • Sonsuz Küçükler Hesabı
Merkezler
Platon Akademisi · Kirene · İskenderiye Kütüphanesi
Etkilendikleri
Babil matematiği · Eski Mısır matematiği
Etkiledikleri
Avrupa matematiği · Hint matematiği · Orta Çağ İslam matematiği
Problemler
Apollonios problemi · Daireyi kareleştirme · Küpü iki katına çıkarma · Açıyı üçe bölme
Kavramlar/Tanımlar
  • Apollonius çemberi
  • Diyofantus denklemi
  • Çevrel çember
  • Eşölçülebilirlik
  • Orantılılık ilkesi
  • Altın oran
  • Yunan rakamları
  • Bir üçgenin iç ve dış çemberleri
  • Tükenme yöntemi
  • Paralellik postülatı
  • Platonik katılar
  • Hipokrat ayı
  • Hippias kuadratiksi
  • Düzgün çokgen
  • Cetvel ve pergelle yapılan çizimler
  • Üçgen merkezi
Bulgular
  • Açıortay teoremi
  • Dış açı teoremi
  • Öklid algoritması
  • Öklid teoremi
  • Geometrik ortalama teoremi
  • Yunan geometrik cebiri
  • Menteşe teoremi
  • Çevre açı teoremi
  • Kesişme teoremi
  • Pons asinorum
  • Pisagor teoremi
  • Thales teoremi
  • Gnomon teoremi
  • Apollonius teoremi
  • Aristarkus eşitsizliği
  • Crossbar (Pasch) teoremi
  • Heron formülü
  • İrrasyonel sayılar
  • Menelaus teoremi
  • Pappus'un alan teoremi
  • Batlamyus eşitsizliği
  • Batlamyus kirişler tablosu
  • Batlamyus teoremi
  • Theodorus sarmalı
Antik Yunan matematikçilerinin zaman çizelgesi
"https://tr.wikipedia.org/w/index.php?title=Crossbar_(Pasch)_teoremi&oldid=32751794" sayfasından alınmıştır
Kategoriler:
  • Öklid geometrisi
  • Üçgen geometrisi
  • Öklid geometrisi teoremleri
  • Sayfa en son 17.07, 11 Mayıs 2024 tarihinde değiştirildi.
  • Metin Creative Commons Atıf-AynıLisanslaPaylaş Lisansı altındadır ve ek koşullar uygulanabilir. Bu siteyi kullanarak Kullanım Şartlarını ve Gizlilik Politikasını kabul etmiş olursunuz.
    Vikipedi® (ve Wikipedia®) kâr amacı gütmeyen kuruluş olan Wikimedia Foundation, Inc. tescilli markasıdır.
  • Gizlilik politikası
  • Vikipedi hakkında
  • Sorumluluk reddi
  • Davranış Kuralları
  • Geliştiriciler
  • İstatistikler
  • Çerez politikası
  • Mobil görünüm
  • Wikimedia Foundation
  • Powered by MediaWiki
Crossbar (Pasch) teoremi
Konu ekle